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1 Introduction 

Simulation is a powerful tool for analysing, understanding 
and developing a wide variety of complex systems. The 
discrete event systems specification (DEVS) formalism 
(Zeigler et al., 2000) is a framework for the construction of 
discrete-event hierarchical modular models that allows for 
model reuse and reduced development time. In DEVS, basic 
models (called atomic) are specified as black boxes, and 
several DEVS models can be coupled forming a hierarchical 
structural model (called coupled). This formalism provides 
precision and speedups in the simulations, and a formal 
approach that can be used to prove properties about the 
models. CD++ (Wainer, 2002, 2009) is a tool that 
implements the DEVS theory, and has been widely used to 
model a variety of applications with success. As a 
consequence of the modular nature of DEVS, these models 
can be easily reused to build new systems saving 
development time. In the last years, CD++ was revised and 

extended several times (Wainer, 2009; Liu and Wainer, 
2007; and Wainer and Wainer, 2013). 

Real-time (RT) systems are defined as those whose 
correctness depends not only on the logical results of 
computation, but also on the time at which the results are 
produced (Liu, 2000). If a system delivers the correct 
answer after a certain deadline, it could be regarded as an 
unsuccessful response. Therefore, a RT simulator must 
handle events in a timeliness fashion where time constraints 
can be stated and validated. CD++ enables important 
advantages in relation to the performance of execution of 
RT simulation. A DEVS model advances in continuous time 
and receives instantaneous asynchronous events that can 
cause the model to change its state. Potentially, this 
characteristic allows better performance execution of 
models using the DEVS formalism and, in particular, using 
the CD++ toolkit. We provided a thorough study to analyse 
the performance of a few DEVS simulators in Wainer et al. 
(2011), and Moallemi and Wainer (2013), focusing on the 
performance of simulation techniques available in CD++ 
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and showing the feasibility of implementing a new RT 
simulator based on the CD++ toolkit. 

We present the implementation of a RT simulation 
engine in the CD++ toolkit, which allows interaction 
between a simulated model and its surrounding environment. 
In a RT simulation, inputs can be received by ports 
connected to real input devices such as sensors, timers, 
thermometers or even data collected from human 
interaction. Similarly, outputs can be sent through output 
ports connected to devices such as motors, transducers, 
gears, valves or any other component. In addition, all the 
available models developed for previous versions of CD++ 
may also be executed under the new RT simulator without 
any modification. The simulation tool allows running 
similar DEVS models as others built in CD++, and executes 
them in RT checking the RT constraints. The tool provides a 
mechanism for checking if deadlines were met or lost. The 
tool supports all kinds of discrete-event models that can be 
built with DEVS (which is the most generic discrete-event 
system specification formalism). The tool executes 
effectively and with low overhead. We present different 
results showing the performance of the new tool. 

2 Background 

The development of embedded RT controller’s software has 
usually posed interesting challenges to the developers due to 
the complexity of the tasks executed. Most methods are 
either hard to scale up for large systems, or require a 
difficult testing effort with no guarantee for bug-free 
software products. Formal methods have showed promising 
results; nevertheless, they are difficult to apply when the 
complexity of the system under development scales up. 
Instead, systems engineers have often relied on the use of 
modelling and simulation (M&S) techniques in order to 
make system development tasks manageable. Construction 
of system models and their analysis through simulation 
reduces both end costs and risks, while enhancing system 
capabilities and improving the quality of the final products. 
M&S let users experiment with ‘virtual’ systems, allowing 
them to explore changes, and test dynamic conditions in a 
risk-free environment. This is a useful approach, moreover 
considering that testing under actual operating conditions 
may be impractical and in some cases impossible. We 
propose to use M&S based on the DEVS formalism with 
this goal. 

DEVS (Zeigler et al., 2000) is a formalism that specifies 
systems whose states change either upon the reception of an 
input event or due to the expiration of a time delay. It allows 
hierarchical decomposition of the model defining a way to 
couple existing DEVS models. A real system modelled 
using DEVS can be described as a composition of atomic 
(behavioural) and coupled (structural) components. An 
atomic model is defined by: 

int, , , , , ,extM X S Y δ δ λ ta=< >  

where X is the input events set, S is the state set, Y is the 
output events set, δint is the internal transition function, δext 

is the external transition function, λ is the output function, 
and ta is the time advance function. Figure 1 shows states 
and variables in DEVS models. 

As we can see in Figure 1, the semantics of DEVS 
models is as follows. Each atomic model can be seen as 
having an interface consisting of input (X) and output (Y) 
ports to communicate with other models. Every state (S) in 
the model is associated with a time advance (ta) function, 
which determines the duration of the state. Once the time 
assigned to the state is consumed, an internal transition is 
triggered. At that moment, the model execution results are 
spread through the model’s output ports by activating an 
output function (λ). Then, an internal transition function 
(δINT) is fired, producing a local state change. Input external 
events are collected in the input ports. An external transition 
function (δEXT) specifies how to react to those inputs. 

Figure 1 DEVS semantics 
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Source: Zeigler et al. (2000) 

A coupled model groups several DEVS components into a 
compound model that can be regarded, owing to the closure 
property, as a new DEVS model. This allows hierarchical 
model construction. When external events are received, the 
coupled model has to redirect the inputs to one or more 
components. Similarly, when a component produces an 
output, it may have to map it as another component, or as an 
output of the coupled model itself. 

CD++ (Wainer, 2009) implements DEVS, allowing the 
definition and simulation of models using the concepts 
described previously. The tool provides a specification 
language that allows describing model coupling, setting 
initial values, and indicating external input events. 
Additionally, atomic models are developed under C++. Two 
basic abstract classes exist: model and processor. The 
former is used to represent the behaviour of the atomic and 
coupled models, while the latter implements the simulation 
mechanisms. The atomic class implements the behaviour of 
an atomic component, whereas the coupled class 
implements the mechanisms of a coupled model. A 
simulator object manages an associated atomic object, 
handling the execution of its δint, δext and λ(s) functions. A 
coordinator object manages an associated coupled object. 
Only one root coordinator exists in a simulation, which 
manages global aspects of the simulation environment, 
maintains the global time, and it starts and stops the 
simulation. Lastly, it receives the output results that must be 
sent to the environment. The simulation process is message 
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driven; it is based on the message exchange among 
processors. 

DEVS was extended in several other ways to adapt the 
formalism for various goals. These extensions include: 
fuzzy DEVS (Zeigler et al., 2000) providing a fuzzy logic to 
the state definition, SymbolicDEVS (Zeigler and Chi, 1992) 
using symbolic algebra to represent time, and rational time 
advance discrete event systems specification (RTA-DEVS) 
(Saadawi and Wainer, 2012, 2013a, 2013b; Saadawi et al., 
2012) using intervals arithmetic to operate timelines. 
Symbolic DEVS was developed in early ‘90s; it extends the 
DEVS formalism to define time as linear polynomials in 
place of real numbers. This formalism can be used to study 
the fault conditions and other properties when doing model 
verification. Its abstract simulator examines all possible 
strict choices of imminent forking execution when needed. 
RTA-DEVS (Saadawi and Wainer, 2012, 2013a) is another 
proposed extension to DEVS formalism. In this case, time is 
defined as intervals with rational borders. The goal of this 
formalism is to allow only the specification of models that 
can be automatically verified using model checking 
methods. To achieve this goal, they reduce the set of 
specifiable models to those that never have irrational time 
advances. The RT and embedded extensions of the DEVS 
methodology (Saadawi and Wainer, 2012, 2013a; Cho et al., 
2000; Furfaro and Nigro, 2009; Song and Kim, 2005) 
provide a model-driven approach towards developing 
embedded controllers. The formal and intrinsic advantages 
of DEVS are combined with RT features to propose a 
design scheme for such applications. Issues such as 
hardware-in-the-loop simulation (HILS) or human-in-the-
loop simulation are addressed in this framework which 
allows for interfacing the DEVS simulation models with the 
RT environment. The benefits of simulation-based 
verification can be employed, allowing for pervasive 
verification of the system under development in a risk-free 
setting, exploring varying test scenarios. A  
high-level abstract hardware-software modelling scheme 
can be provided, where different components of the target 
system can be modelled together. 

3 RT extension to the CD++ toolkit 

In Wainer et al. (2011), an analysis of simulation 
performance showed that a relatively small overhead is 
incurred when executing mid to large-scale models. The 
analysis showed that a RT extension to the toolkit, 
introduced with further details in this paper, was feasible. 
Firstly, we describe the virtual-time simulation approach 
that was previously available in CD++. Secondly, we 
introduce the new RT extension developed in the toolkit. In 
addition, some examples are presented to show both 
simulation approaches. 

3.1 Virtual-time simulation 

In order to execute a simulation using the virtual-time 
approach, CD++ maintains a variable in which the current 

simulation time is stored and updated. This value is not 
linked to any physical clock. The update of that time 
variable is performed by the simulator as follows. When the 
simulation starts, this simulation time is initialised to zero. 
Then, the imminent event (i.e., the event with the earliest 
time of occurrence) is computed and the simulation time is 
advanced accordingly in order to process that event. Once it 
has been processed completely, the new imminent event is 
computed, the simulation time is advanced and the next 
event is processed. This cycle of advancing the simulation 
time and processing the imminent event is repeated. The 
execution ends when the simulation time reaches the stop 
time indicated by the user, or else when there are no more 
pending events. 

The execution of a model using the virtual-time 
approach with the CD++ toolkit is illustrated in the 
following example. This simple DEVS model is formed by 
two inner-coupled components, four input ports, and four 
output ports. Each inner-coupled component has two atomic 
models that execute time-consuming code in their internal 
and external transition functions. The workload of each 
component varies from one component to another. 

Figure 2 Sample model 
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Table 1 Sample event file for the given model using the 
virtual time approach 

Event time Input port Value 

00:00:05:000 in01 1 
00:01:28:100 in02 1 
00:18:21:000 in03 1 
00:31:15:500 in04 1 
00:45:30:200 in02 1 
01:05:00:500 in01 1 
02:15:00:900 in04 1 
05:50:30:200 in03 1 

The model in Figure 2 can receive external events  
through its input ports. This information is supplied by the 
user in the event file where times are written in the 
hours:minutes:seconds:milliseconds format as seen in  
Table 1. This table shows that the first event arrives at time 
00:00:05:000 through the port in01 with a value of 1, a 
second event arrives at time 00:01:28:100 through the port 
in02 also with a value of 1, and so on. When CD++ 
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executes the previous model with the event file previously 
shown, results can be found in an output file. 

Table 2 shows the output file obtained, illustrating how 
time evolves when the virtual-time approach is used. The 
first column indicates the physical time (i.e., wall-clock 
time) at which the output has been sent, representing the 
time elapsed since the beginning of the simulation. The 
simulation time associated to each message is shown in the 
second column. The output port and the associated value 
that was sent are shown in the third and fourth columns 
respectively. For instance, the first line describes an output 
sent through port out01 with a value of 1, which occurred at 
the simulation time 05:000 and at the corresponding 
physical time 00:060. 

Table 2 Output file using the virtual time approach 

Wall-clock time Simulation time Output port Value 

00:00:00:060 00:00:05:000 out01 1 
00:00:00:130 00:01:28:100 out02 1 
00:00:00:230 00:18:21:000 out03 1 
00:00:00:320 00:31:15:500 out04 1 
00:00:00:390 00:45:30:200 out02 1 
00:00:00:430 01:05:00:500 out01 1 
00:00:00:520 02:15:00:900 out04 1 
00:00:00:620 05:50:30:200 out03 1 

As we can see, all periods of inactivity are skipped, which 
leads to the particularity shown above when executing a 
model. Thus, events are not processed at their actual 
scheduled times. 

3.2 RT simulation 

Varied modifications were made to allow RT simulation in 
DEVS (Cho and Kim, 1998; Hong et al., 1997; Hu and 
Zeigler, 2005) and in the CD++ toolkit. A RT simulator 
must handle events in a timely fashion where time 
constraints can be stated and validated. The new features 
allow interaction between the simulator and the surrounding 
environment. Therefore, inputs can be received by ports 
connected to real input devices such as sensors, timers, 
thermometers or human interaction. Similarly, outputs can 
be sent through output ports connected to devices such as 
motors, transducers, gears, valves or any other component. 

To implement the RT extension to the toolkit, the 
advance of the simulation-clock is now tied to the  
wall-clock (i.e., physical time). For that reason, the root 
coordinator now manages the time advance along the 
execution of a simulation. In addition, it is responsible for 
starting each new simulation cycle by issuing the 
corresponding message. A coordinator must wait until the 
physical time reaches the next event time to initiate the new 
cycle. A new simulation cycle can be started either by: 

1 the reception of an external event 

2 the consumption of time indicated by ta(s). 

Periods of inactivity cannot be skipped and the simulation 
remains quiescent during these periods. Instead of forcing a 
time advance up to the next programmed event and thus 
anticipating the execution of a programmed task, the root 
coordinator expects the scheduled time to be reached and 
only then starts the new simulation cycle. Hence, messages 
interchanged between processors are sent, ideally, at their 
actual scheduled time. However, this ideal timely 
processing of events might not be achieved if the incurred 
overhead degrades performance significantly, which is an 
important concern addressed later in this article and also in 
Wainer et al. (2011). 

Timeliness along a simulation is crucial in the RT 
approach. When a model is being executed using this 
technique, it is important to check different time constraints 
throughout the simulation. Particularly, the time at which an 
event has been completely processed is a meaningful 
measure of success. 

Typically, a model must react to an external event 
within a given time and produce an output to respond to the 
problem. For instance, if a sensor indicates dangerous 
overheat, an energy plant needs to shut down a part of its 
system within a given period of time or severe 
consequences might occur. 

Consequently, we provided a means to indicate the 
deadline for each external event in the RT extension of 
CD++. The new extended format of the event file is 
illustrated in the next Table. 

Table 3 Format of the event file in the RT extension 

Event time Deadline Input 
port 

Output 
port Value 

hh:mm:ss:ms hh:mm:ss:ms Port 
name 

Port 
name 

Numeric 
value 

As we can see, a deadline and an output port must be stated, 
and the simulator can check whether the physical time 
meets the associated deadline when sending an output 
through the associated port. Once the execution is over, both 
successful and unsuccessful responses are stored for further 
analysis. A RT simulation based on the model in Figure 2 is 
illustrated in Table 4. 

Table 4 Sample event file for the given model using the  
RT approach 

Event time Deadline Input 
port 

Output 
port Value 

00:00:05:000 00:00:05:020 in01 out01 1 
00:01:28:100 00:01:29:000 in02 out02 1 
00:18:21:000 00:18:21:050 in03 out03 1 
00:31:15:500 00:31:15:540 in04 out04 1 
00:45:30:200 00:45:30:270 in02 out02 1 

The file shows the event times and their associated 
deadlines and output ports for each external event. For 
example, the result for the event arrived at time 05:000 
through the input port in01 should be completed and an 
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output generated before 05:020 through the output port 
out01 (a deadline of 20 ms.). In order to verify these 
constraints, the toolkit informs: 

1 the actual output time 

2 the simulation time 

3 the associated deadline 

4 the output port 

5 the issued value, for each event in the output file. 

Additionally, a result column is included with one of these 
two values: 

if  = success actual output time associated deadline  

 ifnot met >actual output time associated deadline  

Table 5 shows the corresponding output file for the model 
executed using RT engine. 

Table 5 Output file using the RT approach 

Wall-clock 
time 

Simulation 
time Deadline Result Output 

port Value

00:00:05:060 00:00:05:000 00:00:05:020 Not 
met 

out01 1 

00:01:28:170 00:01:28:100 00:01:29:000 Success out02 1 
00:18:21:090 00:18:21:000 00:18:21:050 Not 

met 
out03 1 

00:31:15:580 00:31:15:500 00:31:15:540 Not 
met 

out04 1 

00:45:30:270 00:45:30:200 00:45:30:270 Success out02 1 

The first column shows the actual time at which the output 
has been sent (the wall-clock value since the beginning of 
the simulation). The second column shows the simulation 
time at which this output has been scheduled, whereas the 
third column shows the associated deadline time for the 
given event. It is possible to check whether the deadline has 
been met (i.e., the actual output time ≤ the associated 
deadline) simply by looking at the fourth column. Finally, 
the output port and the obtained value are shown in the 
remaining columns. 

For instance, the first line shows a deadline that has not 
been met in the execution (the deadline was set at 05:020, 
while the actual output was at 05:060). Consequently, not 
met is printed in that line, along with the output port out01 
and the value that has been issued. On the other hand, the 
second line shows an event whose deadline has been met 
successfully. 

Different types of models can be executed with the new 
CD++ RT extension. For instance, an alarm clock model 
(Wainer, 2009) was developed to analyse the RT constraints 
under the new simulation approach. This model can be 
considered as a part of a more complex system. The model, 
which clearly has an important component of time, is 
depicted in Figure 3. 

The entire model has three levels. The top level is the 
ALARM CLOCK, which has six input signals representing 

the push buttons and switch positions in the real system. 
The input port TIME_SET is used in combination with 
HOURS and MINUTES to set the time of day. Similarly, the 
input port ALARM_SET is used in conjunction with HOURS 
and MINUTES to set the alarm time. The buzzer sounds if 
ALARM_ON is set and the actual time (i.e., time of day) is 
equal to the alarm time. SNOOZE stops the buzzer for a 
period of 10 minutes after which the buzzer will 
automatically sound again if ALARM_ON is set. The model 
has two output ports: DISPLAY_TIME represents a  
four-digit display, while BUZZER_ON represents the output 
of the buzzer speaker. 

Figure 3 Alarm clock conceptual model 

 

 
Source: Wainer (2009) 

The top model is subsequently decomposed into sublevels. 
The first level consists of three components: the 
TIME_REGISTER which holds and automatically 
increments the time of day, and the ALARM_CONTROLLER 
which holds the alarm time and decides whether the buzzer 
should be turned on or off. The third component is an 
atomic model named DISPLAY_DRIVER, which determines 
if time of day or alarm time must be displayed. The  
second level consists of five different atomic components. 
The HOURS_REGISTER and MINUTES_REGISTER 

respectively hold the information about the time of day. The 
TIME_COMPARATOR compares the current time with the 
alarm time to detect a match and potentially sound the 
buzzer. The ALARM_TIME_REGISTER holds the alarm 
time. Finally, the BUZZER_DRIVER decides when the 
buzzer needs to be activated or deactivated. 

Table 6 shows results obtained after the execution of the 
alarm clock. Generally, we can see that as time passes, the 
actual time is obtained through the DISPLAY_TIME port, 
which resembles the usual digital display of an alarm clock. 
In addition, information about the buzzer alarm is obtained 
in the output file. The buzzer is turned on at 30:00:000 and 
this is notified through the output port BUZZER_ON at that 
time. The time still evolves normally and the actual time is 
obtained through the DISPLAY_TIME port. The user turns 
off the buzzer at 32:45:500, where the BUZZER_ON issues 
a 0. Recall that the buzzer can be deactivated using the 
SNOOZE button, but the alarm will buzz again after an idle 
period of ten minutes. Hence, at time 42:45:500 the buzzer 
is turned on again, when the output port BUZZER_ON 
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issues a 1. Note that actual output times are equal to their 
corresponding simulation times. This fact shows that delays 
are imperceptibly small all along the simulation of this 
alarm clock. Therefore, such simulation could meet easily 
the deadlines imposed by the user. 

Table 6 Output file excerpt – execution of the alarm clock 

Wall-clock 
time 

Simulation 
time Output port Value 

00:01:00:000 00:01:00:000 DISPLAY_TIME 00:01 
00:02:00:000 00:02:00:000 DISPLAY_TIME 00:02 
00:03:00:000 00:03:00:000 DISPLAY_TIME 00:03 
(…) (…) (…) (…) 
00:30:00:000 00:30:00:000 DISPLAY_TIME 00:30 
00:30:00:000 00:30:00:000 BUZZER_ON 1 
00:31:00:000 00:31:00:000 DISPLAY_TIME 00:31 
00:32:00:000 00:32:00:000 DISPLAY_TIME 00:32 
00:32:45:500 00:32:45:500 BUZZER_ON 0 
00:33:00:000 00:33:00:000 DISPLAY_TIME 00:33 
. . .    
00:42:00:000 00:42:00:000 DISPLAY_TIME 00:42 
00:42:45:500 00:42:45:500 BUZZER_ON 1 
00:43:00:000 00:43:00:000 DISPLAY_TIME 00:43 

3.3 Flat simulation technique 

Recall from Section 2 that CD++ builds a hierarchy of 
model objects (atomic and coupled) and a corresponding 
hierarchy of processor objects (simulator and coordinator 
objects) to perform the simulation. A simulator is created 
for each atomic component, whereas one coordinator is 
created for each coupled one. Thus, as size and complexity 
of the simulated model are increased, the associated 
processor structure is increased accordingly. 

The simulation evolves based on the exchange of 
messages among simulators and coordinators. The number 
of intermediate coordinators in the hierarchy can be 
arbitrarily high depending on the model. Hence, the number 
of messages needed for a single simulation cycle can be 
considerable for large-scale models, because of the size of 
the corresponding hierarchy. Therefore, a main problem to 
be resolved is the overhead incurred by message passing 
among processors (Wainer et al., 2011). To alleviate this 
message passing overhead, a new flat simulation technique 
was implemented (Glinsky and Wainer, 2002). The 
approach is called flat in contrast to the hierarchical one that 
was explained previously. 

When the flat simulation technique is used, the 
associated processor hierarchy is greatly simplified. 
Messages are exchanged only between the root coordinator 
and the flat coordinator, the only two processors that are 
required in the new hierarchy. More information about the 
flat technique is studied in Glinsky and Wainer (2002), and 
is out of the scope of this work. Additionally, a similar 

development for a different DEVS simulator can be found 
in Kim et al. (2000). 

4 Performance analysis of the RT simulator 

Testing the performance of a simulator tool is a very 
complex task. To make the analysis easier and more 
accurate, a synthetic experimental frame has been 
developed. To perform a thorough and accurate study of the 
overhead, the synthetic model generator must be able 
produce a wide variety of models. The produced models 
must be similar to the ones that are studied in the real world. 
To characterise a model, one should consider different 
aspects of its shape and behaviour. Some of the most 
important characteristics are: number of levels in the model 
hierarchy, number of atomic components, number of 
coupled components, total size, number of interconnections 
between components, and workload in internal and external 
transitions. 

We used Dhrystone benchmark code (Weicker, 1984) to 
generate different workload in atomic transition functions. 
Dhrystone code is a synthetic benchmark intended to be 
representative for system (integer) programming. Thus, it is 
possible to make atomic models execute time-consuming 
code inside their internal and external transition functions in 
order to simulate real tasks that could be performed by 
them. We used a Dell workstation with quad-Core Xeon 
processor and 4 GB of RAM to conduct these experiments 
(and the ones in Section 5). 

The tool can generate three different types of models: 
Type-1 (low complexity), Type-2 (medium complexity) and 
Type-3 (high complexity). See Weicker et al. (2011), and 
Moallemi and Wainer (2013) for a more detailed description 
of the synthetic model generator. 

Representative models can be created with the synthetic 
generator. Tests results show both the percentage of success 
and the worst-case response time for each case. The former 
is obtained as follows: 

  
(      )*100

  

Percentage of success
number of events number of missed deadlines

number of events

=
−  

On the other hand, the worst-case response time is obtained 
as follows: 

( )1 2-    = max , , ..., NWorst case response time r r r  

where ri is the response time for the ith event, and N is the 
number of events for the given simulation. 

Figure 4 shows the corresponding charts for the models 
that were created using our synthetic model generator. The 
experiments have been grouped in categories: 

1 Type-1 models with variable depth 

2 Type-1 models with variable width 

3 Type-3 models with variable depth 

4 Type-3 models with variable width. 
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These results show the performance of the RT simulator 
under very stressful scenarios, with external events arriving 
at high frequencies with very strict deadlines. Under these 
circumstances, the difference between the time to be spent 
executing on the transition functions and the associated 
deadline for the events was minimum. In some cases, that 
difference was as less as 10 milliseconds, which might 
represent less than 1% of the theoretical execution time. 

Figure 4 Model execution with variable depth/width, (a) % of 
success (b) worst-case response time (see online 
version for colours) 
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Figure 4(a) shows the percentage of success for Type-1 and 
Type-3 models when depth is variable and the width is 
fixed, and also when the width is variable and the depth is 
fixed, whereas Figure 4(b) illustrates the worst-case 
response time for the same models. As we have explained 
before, this is a very stressful scenario and the conditions 
are very demanding. In particular, the previous charts show 
that it is harder to simulate Type-3 models when the number 
of components increases due to their complex structure, in 
comparison with the equivalent (and simpler) Type-1 
models. Consequently, the worst-case response times are 
remarkably increased for Type-3 models. 

Under these conditions, when a Type-1 model has  
40 active components in its structure, more than 90% of 
success can be achieved. Alternatively, less than 20% of the 
deadlines are met for Type-3 models with 40 components in 
their structures. 

In general, the previous charts illustrate that if the 
number of components is increased, deadlines are more 
likely to be missed and therefore the percentage of success 
is reduced. This is because the number messages needed to 

perform the simulation grows in relation to the size and 
complexity of the model. 

The previous cases studied variations to the models 
themselves, taking into consideration their depth and width. 
A different approach can also be considered, where the 
shape of the models remain unchanged but the scenario in 
which they execute is modified. Hence, different inter-event 
periods (i.e., the frequency of event arrivals) are used in 
these experiments. Consequently, we simulate external 
events that arrive at a different pace to the model, and 
analyse the behaviour of the simulator under such 
circumstances. In addition, the impact of varying the 
amount of time-consuming code in transition functions is 
also tested. The following charts show the results for  
Type-3 models with five components per level (i.e., four 
atomic components and one coupled component in each 
level) and five levels in their hierarchy that were also 
generated using our benchmark. 

Figure 5 RT execution of models with variable  
inter-event period (see online version for colours) 
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Figures 5(a) and 5(b) illustrate the influence of inter-event 
periods on a simulation. When the frequency of event 
arrival is extremely high, the worst-case response times are 
notoriously increased. This situation occurs because 
excessively small inter-event times do not allow the 
simulator to process all the messages involved with the 
event ek before the arrival of the next event, ek+1. When this 
situation arises, queued unprocessed messages are 
accumulated, and therefore the simulation presents an 
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evident degradation of performance. The degradation of 
performance can be noticed by observing the worst-case 
response time for a given simulation. Here, a simulation 
with an inter-event period of 20 milliseconds results in a 
worst-case response time of 15,260 milliseconds. On the 
other hand, Figure 5(b) shows that larger inter-event periods 
result on greater percentages of success. When the intervals 
between events become greater than 180 milliseconds, the 
simulator meets all the associated deadlines for the 
execution. 

Figure 6 RT execution of models with variable transition time 
(see online version for colours) 
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Figure 6 shows the results when the models spent different 
amounts of time in the internal and external transition 
functions. As expected, Figure 6(a) shows that the  
worst-case response times are remarkably increased when 
the time-consuming code is increased, because of the time 
that has to be spent on executing each atomic transition 
function. When the workload is executed in both transition 
functions, the worst-case response time is doubled. We can 
see that proper percentages of success when the workload 
time per function is 0 or 50 milliseconds, in spite of the 
place where the time-consuming code is being executed. In 
contrast, a noticeable reduction in the percentage of success 
is observed in all cases when the time in the transition 
functions is increased to 100 milliseconds. In general  
and as it was expected, if the workload in the transition 
functions increases, the percentage of success is reduced 
consequently. On the other hand, Figure 6(b) shows that the 
model cannot meet its deadlines if a large amount of time is 
spent in the transition functions. 

Finally, the RT performance of the flat simulator is 
analysed. Its execution is compared to that obtained using 
the flat simulator to determine its efficiency. 

In these experiments, both simulators execute Type-3 
models with variable depth and width, and results are shown 
in Figures 7 and 8, respectively. The depth of each model 
ranges from 6 to 15, whereas the width of each model 
ranges from 5 to 11. The size of the resulting models, which 
is a very important parameter of the simulation, lies 
between 40 and 120 components per model. 

Figure 7 Comparison of hierarchical and flat approaches 
(variable depth) (see online version for colours) 
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Figure 8(a) shows a comparison of worst-case execution 
times for both simulation approaches when models with 
different sizes and shapes are executed. Notice that in 
deeper models, the difference between the hierarchical and 
flat simulators becomes more noticeable. Hence, Figure 8(b) 
illustrates that when the model’s depth is equal or larger 
than 7, it is not possible to meet all the deadlines, and the 
percentage of success is remarkably reduced if the 
hierarchical approach is used. However, if the flat technique 
is employed, the percentage of success remains optimal for 
models whose depth is 13. 

Figures 9(a) and 9(b) show similar results for models 
with variable width. Figure 9(b) shows the percentages of 
success for models with different width using both 
simulation techniques. Wider models are more complex, 
and therefore the overhead incurred by the hierarchical 
simulator is increased. However, the flat coordinator can 
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also manage wider models more effectively, as it is shown 
in both figures, where the flat approach outperforms the 
hierarchical approach. 

Figure 8 Comparison of hierarchical and flat approaches 
(variable width) (see online version for colours) 
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In general, we can see that the flat technique outperforms 
the hierarchical one, usually achieving better response time 
and better percentage of success in the execution. Thus, the 
use of the non-hierarchical approach allows the simulation 
of larger models with better performance results. These 
results are a consequence of the reduced number of 
messages exchanged in the simulation that exist in the flat 
simulation mechanism. 

5 RT model execution 

We showed the possibility of executing models under  
RT CD++ with relatively small overhead. In this section, 
two sample models are studied. The first is a vending 
machine model; the second is a more complex model that 
interacts with real hardware. 

5.1 Case study 1: a vending machine model 

A vending machine model (Wainer, 2009) was used for 
further analysis of the RT extension in CD++. This 
simulated vending machine is similar to those existing in 
many cafeterias. Different items can be purchased by  
 

inserting the sufficient amount of money and then selecting 
the appropriate button to dispense the desired product. The 
machine returns the correct amount of change, keeps track 
of the number of items that were dispensed and informs  
out-of-stock products to the customer when necessary. 

The system is composed of several atomic components 
(a coin collector, an item selector, a change maker, a 
balance display, an item processor and others) and coupled 
components (a service controller, which is composed by a 
vending controller). The model has three input ports. Coins 
are inserted via the COIN_IN port, items are selected via the 
ITEM_IN port and change is requested via the 
REQUEST_IN port. The output ports are used as follows: 
ITEM_OUT is used to dispense the products, OUT 
resembles the balance display of the machine and 
CHANGE_OUT is used for the returned coins. 

Figure 9 Vending machine conceptual model 

  
COIN 

COLLECTOR

ITEM 
SELECTOR

CHANGE 
MAKER 

BALANCE 
DISPLAY 

OUT 

REQUEST_IN 

ITEM_IN 

CHANGE_OUT 

COIN_IN 
 SERVICE 

CONTROLLER 

VENDING 
CONTROLLER 

ITEM 
PROCESSOR 

ITEM_OUT

VENDING MACHINE 

 

Table 7 shows a sample event file for the vending machine 
model. Here, a customer inserts different amounts of money 
and requests a particular item. Deadlines are imposed to 
each incoming event. 

Table 7 External event file – vending machine  

Event time Associated 
deadline 

Input 
port 

Associated 
output port Value 

00:00:10:000 00:00:12:500 COIN_IN OUT 0.25 
00:00:15:000 00:00:17:500 COIN_IN OUT 1.00 
00:00:20:000 00:00:25:500 COIN_IN OUT 0.25 
00:00:25:000 00:00:30:000 ITEM_IN ITEM_OUT 28 
(…) (…) (…) (…) (…) 

Table 8 Output file excerpt – execution of the vending 
machine in RT  

Output time  Output port Value 

00:00:12:010 OUT 0.25 
00:00:17:010 OUT 1.25 
00:00:22:010 OUT 1.50 
00:00:28:020 ITEM_OUT 28 
00:00:30:010 OUT 0.00 
(…) (…) (…) 
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For instance, the first quarter is received through the 
COIN_IN port at time 00: 00:10:000, and the associated 
output is expected through the port OUT before 10:250. 
Then, a dollar (1.00) is received at time 15:000, and so on. 
Finally, the item 28 is selected at time 25:000. 

Table 8 shows an excerpt of the vending machine output 
file. The balance display corresponds to the OUT port, and 
its value is updated two seconds after each coin is inserted. 
The item 28 is dispensed through the ITEM_OUT port at 
time 00:28:000, and the table shows that events are 
processed on time. 

5.2 Case study 2: HILS 

A more complex example is shown here, which incorporates 
hardware-in-the-loop as a part of the model. A more 
detailed study of this example model can be found in Li  
et al. (2003). 

The development approach consists in building a model 
in a simulated environment, and incrementally replaces 
some of the simulated components with real hardware. 
Thus, we will first use a model that was entirely developed 
in RT CD++, which will be referred to as the experimental 
frame Test B-1. Then, some of the components are replaced 
by the real hardware surrogate in the experimental frame for 
Test B-2. The following figure shows a block diagram of the 
2189M EZ-KITLITE DSP Board, which was used in the 
experiment. 

Figure 10 Scheme of the analogue devices 2189M EZ-KITLITE 
evaluation board 

 

Figure 11 Experimental frame for Test B-1 

 

 

 

 

 

The sampling rate of the CODEC is programmable with 
four separate settings, offering a 64 kHz, 32 kHz, 16 kHz or 
8 kHz sampling rate (from a master clock of 16.384 MHz). 
In order to control the CODEC and make use of the ADC 
(A/D converter) and DAC (D/A converter), we need to 
program the control registers. This prototype includes 
hardware and software components and is implemented in 
two stages. In the first stage, a set of models was built using 
RT CD++. Figure 11 shows the experimental frame for Test 
B-1, which was used to test the behaviour of the CODEC 
model. 

The experimental frame for Test B-1 has five atomic 
models: 

• Clock: this model generates control signals with a 
predefined period. 

• Control: this model distinguishes the incoming signal. 
If a command signal is received, it will invoke the 
CODEC atomic model. 

• CODEC: this model simulates the behaviour of the 
CODEC. 

• Analogue signal generator: this model generates an 
analogue signal. 

• Display: this model updates and displays the results 
obtained from the CODEC model. 

The coupled model shown in Figure 11 was built to test the 
behaviour of the software version of the CODEC. Table 9 
shows the simulation output for Test B-1. 

Table 9 Output file excerpt for Test B-1 

Output time Port Value 

00:00:40:708 Signal 0001 
00:00:41:008 Signal 0110 
00:00:41:308 Signal 0011 
00:00:41:608 Ground 0000 
00:00:41:900 Signal 1010 
00:00:42:200 Ground 0000 
(…) (…) (…) 

Table 9 shows the output time, the associated port and the 
received value. Hence, the first digital signal is obtained at 
time 40:708 through the signal output port. Its associated 
value is 0001, a binary string that represents the digital 
value of the signal. At the time 41:608, another digital 
signal arrives through ground output port and its value is 
0000. All digital signals are processed successfully through 
the software CODEC model. 
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Figure 12 Experimental frame for Test B-2 (includes  
hardware-in-the-loop) 

 

The application model described previously was reused, 
replacing the CODEC by the actual hardware. The 
experimental frame for Test B-2 was modified to support 
interaction with the real CODEC on the board, and existing 
atomic models were reused. This experimental framework is 
depicted in the next figure. 

In this test, a CLOCK model generates periodic signals 
to awake the control model. Then the CONTROL model 
invokes the TCL model, which is in charge of initialising 
the CODEC and start the conversion. When the CODEC 
finishes the conversion, the DATATRANSFER model will 
acquire these data and send them to the control model. 
Finally, the DATATRANSFER model will feed the data to 
the DISPLAY model. 

The new atomic models are: 

• TCL: this model invokes and opens the VisualDSP 
debugger system. Once the debugger system is opened, 
the different TCL files needed for A/D and D/A access 
can be invoked to obtain samples and regenerate the 
analogue signal. 

• DATATRANSFER: this model reads the digital samples 
and sends them back to the control model. In addition, 
the data will be written back to the board for display if 
the DAC is working. 

To study the correctness and performance of the whole 
simulation, different tests were conducted to evaluate the 
software and hardware components, as well as the program 
as a whole. A test is presented below. 

At the initialisation phase, the CLOCK model generates 
a control signal to start the CONTROL model. The 
CONTROL model then invokes the TCL model to start an 
IDE application and to load the TCL script. After pressing 
the reset button on the DSP board, the IDE debugger is 
opened. It automatically loads the talk-through program into 
the DSP board. At the same time, the DATATRANSFER 
model is in sleep state and waits for the data to be generated 
by the CODEC on the DSP board. Upon reception of the 
converted digital data, the DATATRANSFER model takes 
the data and sends them back to the CONTROL model. 
Finally, through the DISPLAY model, these samples will be 
updated and stored in a bin. After one simulation cycle, the 
clock will generate the next command. The simulation can 
be terminated by a preset simulation time or manually. 

The following figure shows the output file obtained after 
one simulation cycle: 

According to the above execution results in Table 10, all 
the signal conversions are successful and the values are 
obtained properly. If we compare these results with those 
corresponding to Test B-1, we can see that they match. 
Differences in the value column are a result of the 
representation format and the analogue waveform used. In 
this final stage, D/A functionality of the CODEC is added 
into the simulation cycle. The purpose of this test is to 
verify the correctness of the digital samples obtained from 
the previous testing case. Ideally, when these digital 
samples are converted back into the analogue form, the 
oscilloscope should display exactly the same waveform 
used for the previous testing. 

Table 10 Output file excerpt for an experiment using Test B-2 
experimental frame 

Output time Port Value 

00:00:40:708 Signal 0.50391 
00:00:41:008 Signal –1.00000 
00:00:41:308 Signal 0.97546 
00:00:41:608 Ground 0.03967 
00:00:41:900 Signal –1.00000 
00:00:42:200 Ground 0.03857 
00:00:42:500 Signal –1.00000 
(…) (…) (…) 

5.3 Case study 3: a robotic arm controller 

The Lego Mindstorms NXT  is a programmable robotics kit. 
The main component of the kit is a computer, called the 
NXT, which can take inputs from up to four sensors and 
control up to three motors via RJ12 cables. The kit includes 
three identical servomotors that have built-in reduction gear 
assemblies and can sense their rotations within one degree 
of accuracy. The kit also includes four sensors, each with a 
different capability. The touch sensor, the light sensor, the 
sound sensor, the ultrasonic sensor can measure distances 
and detect movement. Using NXT++  (a C++ open source 
library that provides functions to control the sensors and 
motors via an USB or Bluetooth connection from a 
computer), users can program different applications. 

Using the toolkit, we built a robotic arm that can lift, 
pivot, and grab objects with its claws. The robot uses sound, 
touch and colour sensors, and two motors: one for moving 
the arm up and down and one for the claw to grab and 
release. In this case, we built a DEVS model to control the 
behaviour of the robot (using ECD++ on a Linux system), 
and we installed the code needed in the NXT 
microcontroller. After compiling the model ECD++ 
provides an interface to open a Telnet connection to the 
target board and then the executable simulation file, the 
model file and the event files were copied to the target 
board. The connection between the robot arm and the board 
was via USB port. 
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Figure 13 Robotic arm architecture (includes hardware-in-the-loop) (see online version for colours) 

 

Figure 14 ColorSensor DEVS graph 

 

 
The arm controller waits for a sound input from the user. On 
getting a sound input, the arm moves down for a  
pre-specified amount of time or until the touch sensor hits a 
ball. Figure 13 shows the design hierarchy of atomic models 
in the top coupled model for RoboArm model. The 
following figure shows a model of the robotic arm, a 
coupled model composed of five atomic models: 
ArmController, Sound Controller, UltrasonicSensorC, 
ColorSensor and Claw. 

There is a top coupled model that contains five atomic 
models. Sound, touch and colour sensor atomic models are 
responsible for sound, touch and colour sensor controlling. 
These models receive the input of the sensors and forward it 
to the arm controller model. The arm controller model is 
responsible for controlling the arm. It receives inputs from 
sensors models and sends outputs to colour sensor model, 
claw model and arm motor. The claw model is only 
responsible for the claw motor. The sound controller waits 
until it receives an input from a sound sensor, and then 

triggers the arm controller. The controller uses the 
information from all the sensors, and decides how to react 
according to the values received. The ultrasonic sensor 
model is responsible for determining when the robot has 
found a ball. When a ball is found, a colour sensor is 
activated. The ArmController uses this value, and tells the 
claw to grab the ball or not based on the colour. 

When the touch sensor detects a ball, the arm stops. 
Then the light sensor allows deciding what to do depending 
on the colour of the ball. The sound and touch sensor only 
receive an input when there is an input available for them, 
but the colour sensor receives input in a periodic manner, 
during a certain time interval which the arm controller asks 
it to detect the colour. 

The idea is to simulate the model first, and then to port 
the simulated software to control the actual robotic arm. 
Figure 14 describes the behaviour of the colour sensor 
controller described above, defined as an atomic model 
using a DEVS graph. 
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Figure 15 ArmController DEVS graph 

 

 

 

The external transitions receive inputs and initiates 
appropriate state transitions. Once the right state is chosen 
(redball, blueball), the value is transmitted through the 
corresponding output port. Then, the model waits for the 
next input. The sensor takes 1 ms to detect the colour 
(simulated or RT), after which the output and internal 
transition are triggered. The other models are similar to this 
one. For instance, the UltraSonicSensorC model waits for 
inputs, and depending on the distance, it sends an output to 
start the motor. The Claw atomic model receives different 
inputs and according to their values, it gives the order to 
grab the ball, release it, or finish. The ArmController model 
is described in Figure 15. 

The ArmController waits for inputs and when received, 
the arm changes to the informsonar state for 1 ms. After this 
time, an output is sent to ultrasonic sensor requesting 
horizontal movement. The controller then changes to state 
checkball and waits for an input (the idea is to connect this 
model to the ultrasonic sensor, but the input could come 
from any source of inputs). When a new input is received, 
the controller goes into the informColor or goingDown 
states (depending on the input received). The colour must be 
checked, or the horizontal and vertical motors must be 
moved. When in the informColor state, an output is sent to 
request the colour values. The goUp state is used when a 
blue ball is detected (making the arm to move up). 
Otherwise, the order to close the claw is sent. 

As explained above, the idea is to simulate the model 
first, and then to port the simulated software to control the 
actual robotic arm. For instance, when we want to test the 
ultrasonic sensor model, we obtain the following simulation 
results: 

INPUTS OUTPUTS 

05:00 IN_U1 1 06:001 out_u 1 

06:00 IN_U 19 09:001 out_u 2 

07:00 IN_U 2 11:001 out_u 3 

08:00 IN_U1 1  

09:00 IN_U 9  

10:00 IN_U1 1  

11:00 IN_U 2  

As we can see, we can test the atomic model using various 
inputs and obtain the desired outputs within tight deadlines, 
but in simulation time. After, each model was ported to 
execute in E-CD++. The models are not modified, and they 
still control the system when running in RT. Following, we 
show the inputs and outputs of the ultrasonic sensor atomic 
model executing in RT using E-CD++ in RT mode. 

INPUTS 

05:00 06:00 IN_U1 OUT_U 1 

06:00 07:00 IN_U OUT_U 19 

07:00 08:00 IN_U OUT_U 2 

08:00 09:00 IN_U1 OUT_U 1 

09:00 10:00 IN_U OUT_U 9 

10:00 11:00 IN_U1 OUT_U 1 

11:00 12:00 IN_U OUT_U 2 

 

OUTPUTS 

Cur Time: 06:001 Deadline: 06:000  

(NOT succeeded) OutPort: out_u PortValue: 
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1 

 

Cur Time: 09:001 Deadline: 07:000  

(NOT succeeded) OutPort: out_u PortValue: 
2 

 

Cur Time: 11:001 Deadline: 08:000  

(NOT succeeded) OutPort: out_u PortValue: 
3 

As we can see, the tool helps the designer in finding 
problems with the RT constraints, and fixing the model 
accordingly. The following test shows the overall results for 
the robot arm controller, and Figure 16 shows a picture of 
the actual robotic controller in action. 

INPUTS 

05:00 06:00 IN_S OUT_M 30 

07:00 06:00 IN_U OUT_M 4 

09:00 06:00 IN_U OUT_M 2 

10:00 06:00 IN_CS OUT_M 9 

 

OUTPUTS 

Cur Time: 05:002 (no dealine specified) 
OutPort: out_h PortValue: 1 

Cur Time: 07:002 Deadline: 06:000(NOT 
SUCCEEDED) OutPort: out_m PortValue: 0 

Cur Time: 07:002 (no dealine specified) 
OutPort: out_h PortValue: 0 

Cur Time: 11:025 (no dealine specified) 
OutPort: out_claw PortValue: 1 

Cur Time: 12:025 Deadline: 08:000 (NOT 
succeeded) OutPort: out_m PortValue: 1 

Cur Time: 17:025 Deadline: 10:000 (NOT 
succeeded) OutPort: out_m PortValue: 0 

5.4 Discussion 

Testing the performance of a simulator is usually a very 
complicated task. We have developed a synthetic model 
generator to facilitate the testing phase. To emulate several 
degrees of complexity in their structures, different types of 
models have been defined. In addition, it is possible to 
determine a given workload to be executed in the atomic 
transition functions. A thorough testing has been carried out 
on different simulation techniques provided in the CD++ 
toolkit (Moallemi and Wainer, 2010; Rafsanjani-Sadeghi  
et al., 2010; Shang and Wainer, 2008). The performance of 
each simulator has been characterised. The overhead 
incurred by the different simulators is bounded and the 
performance is appropriate in most cases. The obtained 
results have shown the possibility of developing a RT 
extension to the toolkit. 

The benchmark experiments have shown good results on 
RT executions. We have studied the percentage of success 
and worst-case response times under different scenarios. 
Several properties of the model and its environment have 

been analysed. Some weaknesses have been pointed out in 
the analysis of the tool, specifically on the execution of 
extremely large models. The message-passing process may 
affect the execution performance, mainly if the model 
structure is too large or complex. Even though the 
performance degradation was small, it was desirable to 
provide more efficiency not only in RT but also in virtual 
time simulations. Thus, a new flattened simulator has been 
presented to overcome the described problems. 

Figure 16 Robotic arm with red and blue ball (see online 
version for colours) 

 

 
Source: http://youtube.com/arslab 

The flattened simulator transforms the hierarchical structure 
of a model to a flattened structure in order to reduce the 
overhead incurred by the message passing among simulators 
and coordinators. The resulting non-hierarchical structure is 
simpler and more effective. The non-hierarchical approach 
can be applied not only for DEVS but also for Cell-DEVS 
simulations. 

A thorough testing has been performed to the flattened 
simulator. In most cases, the flattened technique 
outperforms the hierarchical technique. We have conducted 
a thorough testing of the new flattened simulator, comparing 
the results with those obtained using the hierarchical 
simulator. Both synthetically generated models and existing 
models from the CD++ library were executed. The 
experiments included virtual time and RT model execution. 

When the virtual time approach is used, in most cases 
the flattened simulator is more efficient and reduces the 
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simulation time. On the other hand, when the RT approach 
is used, the flattened simulator provides better response 
times and greater percentages of success. 

Not only DEVS but also cell-DEVS models have been 
executed employing the new simulation technique. When 
the flattened simulator is used, the processor structure is 
more simple and, usually, more effective. 

The use of the non-hierarchical simulator reduces the 
number of messages exchanged in the simulation process. 
This reduction of overhead leads to better performance 
results. In general, we have shown that the new flattened 
simulator outperforms the hierarchical one. 

6 Conclusions 

We have provided a means to execute models in RT using 
the CD++ toolkit. When the new RT extension is employed, 
events must be handled timely and time constraints can be 
stated and validated accordingly. The RT simulator ties the 
advance of the simulation time to the wall-clock time. 
Consequently, these new features allow interaction between 
the simulator and the surrounding environment. The new 
RT simulator has been tested and analysed. 

The RT performance of the CD++ toolkit was analysed. 
The benchmark experiments showed good results on RT 
executions. We studied the success rate and worst-case 
response times under different scenarios. Several properties 
of models and their environment were analysed. Some 
weaknesses were pointed out in the analysis of the tool, 
specifically about the execution of extremely large models. 
The message-passing process may influence the execution 
performance, mainly if the model structure is too large or 
complex. The flat simulator transforms the hierarchical 
structure of a model into a flat structure to reduce the 
overhead incurred by message passing among simulators 
and coordinators. The resulting non-hierarchical structure is 
simpler, and its performance was analysed in this work. In 
general, we showed that the flat simulator outperforms the 
hierarchical, alleviating the overhead incurred by message 
passing when large or complex models are executed. 

Finally, we presented some examples to illustrate how to 
execute DEVS models in RT CD++. In the last example, we 
showed a way to execute HILS of discrete event models 
using RT CD++. Firstly, a DEVS model was built to 
simulate the behaviour of a CODEC together with a test 
program using that device. Secondly, the actual CODEC 
was deployed as a hardware prototype to replace the CD++ 
model, integrating the prototype into the original DEVS 
component. Hence, we demonstrated the use of RT CD++ 
to analyse models in a simulated environment and to 
execute these models in a hardware surrogate. 
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