
138 Int. J. Simulation and Process Modelling, Vol. 11, No. 2, 2016

Copyright © 2016 Inderscience Enterprises Ltd.

Real-time simulation of DEVS models in CD++

Gabriel A. Wainer
Department of Systems and Computer Engineering,
Carleton University Centre for Visualization and Simulation (V-Sim),
Carleton University,
3216 VSim, 1125 Colonel By Drive,
Ottawa, ON, K1S 5B6, Canada
Email: gwainer@dc.uba.ar

Abstract: The CD++ toolkit was developed in order to implement the theoretical concepts
specified by the DEVS formalism. The tool allows the execution of both DEVS and cell-DEVS
models. In this work, we present the definition and implementation of a real-time simulator. In
such simulations, events must be handled timely and time constraints can be stated and validated
accordingly. The new simulation technique allows the interaction between the model and its
surrounding environment. Additionally, a non-hierarchical simulation approach is presented and
introduced to CD++ in order to reduce the communication overhead.

Keywords: discrete event systems specification; DEVS; real-time DEVS; real-time systems;
CD++ toolkit.

Reference to this paper should be made as follows: Wainer, G.A. (2016) ‘Real-time simulation
of DEVS models in CD++’, Int. J. Simulation and Process Modelling, Vol. 11, No. 2,
pp.138–153.

Biographical notes: Gabriel A. Wainer received his PhD degree (1998, with highest honours) at
the University of Marseille, France. He is a Full Professor and Associate Chair in the Department
of Systems and Computer Engineering at Carleton University. He authored three books and over
320 research articles; he edited four other books and helped organising a large number of
conferences, being one of the founders of SimAUD, SIMUTools and TMS-DEVS. He is a
Special Issues Editor of SIMULATION, member of the editorial board of IEEE Computational
Science and Engineering, Wireless Networks (Elsevier), and Journal of Defense Modeling and
Simulation (SCS). He received the IBM Eclipse Innovation Award, SCS Leadership Award, and
various Best Paper awards; also, the First Bernard P. Zeigler DEVS Award (2010), the SCS
Outstanding Professional Award (2011), Carleton University’s Mentorship Award, SCS
Distinguished Professional Achievement Award (2013) and Carleton University's Research
Achievement Award (2005 and 2014).

1 Introduction

Simulation is a powerful tool for analysing, understanding
and developing a wide variety of complex systems. The
discrete event systems specification (DEVS) formalism
(Zeigler et al., 2000) is a framework for the construction of
discrete-event hierarchical modular models that allows for
model reuse and reduced development time. In DEVS, basic
models (called atomic) are specified as black boxes, and
several DEVS models can be coupled forming a hierarchical
structural model (called coupled). This formalism provides
precision and speedups in the simulations, and a formal
approach that can be used to prove properties about the
models. CD++ (Wainer, 2002, 2009) is a tool that
implements the DEVS theory, and has been widely used to
model a variety of applications with success. As a
consequence of the modular nature of DEVS, these models
can be easily reused to build new systems saving
development time. In the last years, CD++ was revised and

extended several times (Wainer, 2009; Liu and Wainer,
2007; and Wainer and Wainer, 2013).

Real-time (RT) systems are defined as those whose
correctness depends not only on the logical results of
computation, but also on the time at which the results are
produced (Liu, 2000). If a system delivers the correct
answer after a certain deadline, it could be regarded as an
unsuccessful response. Therefore, a RT simulator must
handle events in a timeliness fashion where time constraints
can be stated and validated. CD++ enables important
advantages in relation to the performance of execution of
RT simulation. A DEVS model advances in continuous time
and receives instantaneous asynchronous events that can
cause the model to change its state. Potentially, this
characteristic allows better performance execution of
models using the DEVS formalism and, in particular, using
the CD++ toolkit. We provided a thorough study to analyse
the performance of a few DEVS simulators in Wainer et al.
(2011), and Moallemi and Wainer (2013), focusing on the
performance of simulation techniques available in CD++

 Real-time simulation of DEVS models in CD++ 139

and showing the feasibility of implementing a new RT
simulator based on the CD++ toolkit.

We present the implementation of a RT simulation
engine in the CD++ toolkit, which allows interaction
between a simulated model and its surrounding environment.
In a RT simulation, inputs can be received by ports
connected to real input devices such as sensors, timers,
thermometers or even data collected from human
interaction. Similarly, outputs can be sent through output
ports connected to devices such as motors, transducers,
gears, valves or any other component. In addition, all the
available models developed for previous versions of CD++
may also be executed under the new RT simulator without
any modification. The simulation tool allows running
similar DEVS models as others built in CD++, and executes
them in RT checking the RT constraints. The tool provides a
mechanism for checking if deadlines were met or lost. The
tool supports all kinds of discrete-event models that can be
built with DEVS (which is the most generic discrete-event
system specification formalism). The tool executes
effectively and with low overhead. We present different
results showing the performance of the new tool.

2 Background

The development of embedded RT controller’s software has
usually posed interesting challenges to the developers due to
the complexity of the tasks executed. Most methods are
either hard to scale up for large systems, or require a
difficult testing effort with no guarantee for bug-free
software products. Formal methods have showed promising
results; nevertheless, they are difficult to apply when the
complexity of the system under development scales up.
Instead, systems engineers have often relied on the use of
modelling and simulation (M&S) techniques in order to
make system development tasks manageable. Construction
of system models and their analysis through simulation
reduces both end costs and risks, while enhancing system
capabilities and improving the quality of the final products.
M&S let users experiment with ‘virtual’ systems, allowing
them to explore changes, and test dynamic conditions in a
risk-free environment. This is a useful approach, moreover
considering that testing under actual operating conditions
may be impractical and in some cases impossible. We
propose to use M&S based on the DEVS formalism with
this goal.

DEVS (Zeigler et al., 2000) is a formalism that specifies
systems whose states change either upon the reception of an
input event or due to the expiration of a time delay. It allows
hierarchical decomposition of the model defining a way to
couple existing DEVS models. A real system modelled
using DEVS can be described as a composition of atomic
(behavioural) and coupled (structural) components. An
atomic model is defined by:

int, , , , , ,extM X S Y δ δ λ ta=< >

where X is the input events set, S is the state set, Y is the
output events set, δint is the internal transition function, δext

is the external transition function, λ is the output function,
and ta is the time advance function. Figure 1 shows states
and variables in DEVS models.

As we can see in Figure 1, the semantics of DEVS
models is as follows. Each atomic model can be seen as
having an interface consisting of input (X) and output (Y)
ports to communicate with other models. Every state (S) in
the model is associated with a time advance (ta) function,
which determines the duration of the state. Once the time
assigned to the state is consumed, an internal transition is
triggered. At that moment, the model execution results are
spread through the model’s output ports by activating an
output function (λ). Then, an internal transition function
(δINT) is fired, producing a local state change. Input external
events are collected in the input ports. An external transition
function (δEXT) specifies how to react to those inputs.

Figure 1 DEVS semantics

x

s' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

ta(s)

Source: Zeigler et al. (2000)

A coupled model groups several DEVS components into a
compound model that can be regarded, owing to the closure
property, as a new DEVS model. This allows hierarchical
model construction. When external events are received, the
coupled model has to redirect the inputs to one or more
components. Similarly, when a component produces an
output, it may have to map it as another component, or as an
output of the coupled model itself.

CD++ (Wainer, 2009) implements DEVS, allowing the
definition and simulation of models using the concepts
described previously. The tool provides a specification
language that allows describing model coupling, setting
initial values, and indicating external input events.
Additionally, atomic models are developed under C++. Two
basic abstract classes exist: model and processor. The
former is used to represent the behaviour of the atomic and
coupled models, while the latter implements the simulation
mechanisms. The atomic class implements the behaviour of
an atomic component, whereas the coupled class
implements the mechanisms of a coupled model. A
simulator object manages an associated atomic object,
handling the execution of its δint, δext and λ(s) functions. A
coordinator object manages an associated coupled object.
Only one root coordinator exists in a simulation, which
manages global aspects of the simulation environment,
maintains the global time, and it starts and stops the
simulation. Lastly, it receives the output results that must be
sent to the environment. The simulation process is message

140 G.A. Wainer

driven; it is based on the message exchange among
processors.

DEVS was extended in several other ways to adapt the
formalism for various goals. These extensions include:
fuzzy DEVS (Zeigler et al., 2000) providing a fuzzy logic to
the state definition, SymbolicDEVS (Zeigler and Chi, 1992)
using symbolic algebra to represent time, and rational time
advance discrete event systems specification (RTA-DEVS)
(Saadawi and Wainer, 2012, 2013a, 2013b; Saadawi et al.,
2012) using intervals arithmetic to operate timelines.
Symbolic DEVS was developed in early ‘90s; it extends the
DEVS formalism to define time as linear polynomials in
place of real numbers. This formalism can be used to study
the fault conditions and other properties when doing model
verification. Its abstract simulator examines all possible
strict choices of imminent forking execution when needed.
RTA-DEVS (Saadawi and Wainer, 2012, 2013a) is another
proposed extension to DEVS formalism. In this case, time is
defined as intervals with rational borders. The goal of this
formalism is to allow only the specification of models that
can be automatically verified using model checking
methods. To achieve this goal, they reduce the set of
specifiable models to those that never have irrational time
advances. The RT and embedded extensions of the DEVS
methodology (Saadawi and Wainer, 2012, 2013a; Cho et al.,
2000; Furfaro and Nigro, 2009; Song and Kim, 2005)
provide a model-driven approach towards developing
embedded controllers. The formal and intrinsic advantages
of DEVS are combined with RT features to propose a
design scheme for such applications. Issues such as
hardware-in-the-loop simulation (HILS) or human-in-the-
loop simulation are addressed in this framework which
allows for interfacing the DEVS simulation models with the
RT environment. The benefits of simulation-based
verification can be employed, allowing for pervasive
verification of the system under development in a risk-free
setting, exploring varying test scenarios. A
high-level abstract hardware-software modelling scheme
can be provided, where different components of the target
system can be modelled together.

3 RT extension to the CD++ toolkit

In Wainer et al. (2011), an analysis of simulation
performance showed that a relatively small overhead is
incurred when executing mid to large-scale models. The
analysis showed that a RT extension to the toolkit,
introduced with further details in this paper, was feasible.
Firstly, we describe the virtual-time simulation approach
that was previously available in CD++. Secondly, we
introduce the new RT extension developed in the toolkit. In
addition, some examples are presented to show both
simulation approaches.

3.1 Virtual-time simulation

In order to execute a simulation using the virtual-time
approach, CD++ maintains a variable in which the current

simulation time is stored and updated. This value is not
linked to any physical clock. The update of that time
variable is performed by the simulator as follows. When the
simulation starts, this simulation time is initialised to zero.
Then, the imminent event (i.e., the event with the earliest
time of occurrence) is computed and the simulation time is
advanced accordingly in order to process that event. Once it
has been processed completely, the new imminent event is
computed, the simulation time is advanced and the next
event is processed. This cycle of advancing the simulation
time and processing the imminent event is repeated. The
execution ends when the simulation time reaches the stop
time indicated by the user, or else when there are no more
pending events.

The execution of a model using the virtual-time
approach with the CD++ toolkit is illustrated in the
following example. This simple DEVS model is formed by
two inner-coupled components, four input ports, and four
output ports. Each inner-coupled component has two atomic
models that execute time-consuming code in their internal
and external transition functions. The workload of each
component varies from one component to another.

Figure 2 Sample model

COUPLED MODEL #01 (TOP MODEL)

COUPLED MODEL #02

COUPLED MODEL #03

ATOMIC MODEL #01
ATOMIC MODEL #02

ATOMIC MODEL #03
ATOMIC MODEL #04

IN04

IN01

IN02

IN03

OUT04

OUT02

OUT03

OUT01

Table 1 Sample event file for the given model using the
virtual time approach

Event time Input port Value

00:00:05:000 in01 1
00:01:28:100 in02 1
00:18:21:000 in03 1
00:31:15:500 in04 1
00:45:30:200 in02 1
01:05:00:500 in01 1
02:15:00:900 in04 1
05:50:30:200 in03 1

The model in Figure 2 can receive external events
through its input ports. This information is supplied by the
user in the event file where times are written in the
hours:minutes:seconds:milliseconds format as seen in
Table 1. This table shows that the first event arrives at time
00:00:05:000 through the port in01 with a value of 1, a
second event arrives at time 00:01:28:100 through the port
in02 also with a value of 1, and so on. When CD++

 Real-time simulation of DEVS models in CD++ 141

executes the previous model with the event file previously
shown, results can be found in an output file.

Table 2 shows the output file obtained, illustrating how
time evolves when the virtual-time approach is used. The
first column indicates the physical time (i.e., wall-clock
time) at which the output has been sent, representing the
time elapsed since the beginning of the simulation. The
simulation time associated to each message is shown in the
second column. The output port and the associated value
that was sent are shown in the third and fourth columns
respectively. For instance, the first line describes an output
sent through port out01 with a value of 1, which occurred at
the simulation time 05:000 and at the corresponding
physical time 00:060.

Table 2 Output file using the virtual time approach

Wall-clock time Simulation time Output port Value

00:00:00:060 00:00:05:000 out01 1
00:00:00:130 00:01:28:100 out02 1
00:00:00:230 00:18:21:000 out03 1
00:00:00:320 00:31:15:500 out04 1
00:00:00:390 00:45:30:200 out02 1
00:00:00:430 01:05:00:500 out01 1
00:00:00:520 02:15:00:900 out04 1
00:00:00:620 05:50:30:200 out03 1

As we can see, all periods of inactivity are skipped, which
leads to the particularity shown above when executing a
model. Thus, events are not processed at their actual
scheduled times.

3.2 RT simulation

Varied modifications were made to allow RT simulation in
DEVS (Cho and Kim, 1998; Hong et al., 1997; Hu and
Zeigler, 2005) and in the CD++ toolkit. A RT simulator
must handle events in a timely fashion where time
constraints can be stated and validated. The new features
allow interaction between the simulator and the surrounding
environment. Therefore, inputs can be received by ports
connected to real input devices such as sensors, timers,
thermometers or human interaction. Similarly, outputs can
be sent through output ports connected to devices such as
motors, transducers, gears, valves or any other component.

To implement the RT extension to the toolkit, the
advance of the simulation-clock is now tied to the
wall-clock (i.e., physical time). For that reason, the root
coordinator now manages the time advance along the
execution of a simulation. In addition, it is responsible for
starting each new simulation cycle by issuing the
corresponding message. A coordinator must wait until the
physical time reaches the next event time to initiate the new
cycle. A new simulation cycle can be started either by:

1 the reception of an external event

2 the consumption of time indicated by ta(s).

Periods of inactivity cannot be skipped and the simulation
remains quiescent during these periods. Instead of forcing a
time advance up to the next programmed event and thus
anticipating the execution of a programmed task, the root
coordinator expects the scheduled time to be reached and
only then starts the new simulation cycle. Hence, messages
interchanged between processors are sent, ideally, at their
actual scheduled time. However, this ideal timely
processing of events might not be achieved if the incurred
overhead degrades performance significantly, which is an
important concern addressed later in this article and also in
Wainer et al. (2011).

Timeliness along a simulation is crucial in the RT
approach. When a model is being executed using this
technique, it is important to check different time constraints
throughout the simulation. Particularly, the time at which an
event has been completely processed is a meaningful
measure of success.

Typically, a model must react to an external event
within a given time and produce an output to respond to the
problem. For instance, if a sensor indicates dangerous
overheat, an energy plant needs to shut down a part of its
system within a given period of time or severe
consequences might occur.

Consequently, we provided a means to indicate the
deadline for each external event in the RT extension of
CD++. The new extended format of the event file is
illustrated in the next Table.

Table 3 Format of the event file in the RT extension

Event time Deadline Input
port

Output
port Value

hh:mm:ss:ms hh:mm:ss:ms Port
name

Port
name

Numeric
value

As we can see, a deadline and an output port must be stated,
and the simulator can check whether the physical time
meets the associated deadline when sending an output
through the associated port. Once the execution is over, both
successful and unsuccessful responses are stored for further
analysis. A RT simulation based on the model in Figure 2 is
illustrated in Table 4.

Table 4 Sample event file for the given model using the
RT approach

Event time Deadline Input
port

Output
port Value

00:00:05:000 00:00:05:020 in01 out01 1
00:01:28:100 00:01:29:000 in02 out02 1
00:18:21:000 00:18:21:050 in03 out03 1
00:31:15:500 00:31:15:540 in04 out04 1
00:45:30:200 00:45:30:270 in02 out02 1

The file shows the event times and their associated
deadlines and output ports for each external event. For
example, the result for the event arrived at time 05:000
through the input port in01 should be completed and an

142 G.A. Wainer

output generated before 05:020 through the output port
out01 (a deadline of 20 ms.). In order to verify these
constraints, the toolkit informs:

1 the actual output time

2 the simulation time

3 the associated deadline

4 the output port

5 the issued value, for each event in the output file.

Additionally, a result column is included with one of these
two values:

if = success actual output time associated deadline

 ifnot met >actual output time associated deadline

Table 5 shows the corresponding output file for the model
executed using RT engine.

Table 5 Output file using the RT approach

Wall-clock
time

Simulation
time Deadline Result Output

port Value

00:00:05:060 00:00:05:000 00:00:05:020 Not
met

out01 1

00:01:28:170 00:01:28:100 00:01:29:000 Success out02 1
00:18:21:090 00:18:21:000 00:18:21:050 Not

met
out03 1

00:31:15:580 00:31:15:500 00:31:15:540 Not
met

out04 1

00:45:30:270 00:45:30:200 00:45:30:270 Success out02 1

The first column shows the actual time at which the output
has been sent (the wall-clock value since the beginning of
the simulation). The second column shows the simulation
time at which this output has been scheduled, whereas the
third column shows the associated deadline time for the
given event. It is possible to check whether the deadline has
been met (i.e., the actual output time ≤ the associated
deadline) simply by looking at the fourth column. Finally,
the output port and the obtained value are shown in the
remaining columns.

For instance, the first line shows a deadline that has not
been met in the execution (the deadline was set at 05:020,
while the actual output was at 05:060). Consequently, not
met is printed in that line, along with the output port out01
and the value that has been issued. On the other hand, the
second line shows an event whose deadline has been met
successfully.

Different types of models can be executed with the new
CD++ RT extension. For instance, an alarm clock model
(Wainer, 2009) was developed to analyse the RT constraints
under the new simulation approach. This model can be
considered as a part of a more complex system. The model,
which clearly has an important component of time, is
depicted in Figure 3.

The entire model has three levels. The top level is the
ALARM CLOCK, which has six input signals representing

the push buttons and switch positions in the real system.
The input port TIME_SET is used in combination with
HOURS and MINUTES to set the time of day. Similarly, the
input port ALARM_SET is used in conjunction with HOURS
and MINUTES to set the alarm time. The buzzer sounds if
ALARM_ON is set and the actual time (i.e., time of day) is
equal to the alarm time. SNOOZE stops the buzzer for a
period of 10 minutes after which the buzzer will
automatically sound again if ALARM_ON is set. The model
has two output ports: DISPLAY_TIME represents a
four-digit display, while BUZZER_ON represents the output
of the buzzer speaker.

Figure 3 Alarm clock conceptual model

Source: Wainer (2009)

The top model is subsequently decomposed into sublevels.
The first level consists of three components: the
TIME_REGISTER which holds and automatically
increments the time of day, and the ALARM_CONTROLLER
which holds the alarm time and decides whether the buzzer
should be turned on or off. The third component is an
atomic model named DISPLAY_DRIVER, which determines
if time of day or alarm time must be displayed. The
second level consists of five different atomic components.
The HOURS_REGISTER and MINUTES_REGISTER

respectively hold the information about the time of day. The
TIME_COMPARATOR compares the current time with the
alarm time to detect a match and potentially sound the
buzzer. The ALARM_TIME_REGISTER holds the alarm
time. Finally, the BUZZER_DRIVER decides when the
buzzer needs to be activated or deactivated.

Table 6 shows results obtained after the execution of the
alarm clock. Generally, we can see that as time passes, the
actual time is obtained through the DISPLAY_TIME port,
which resembles the usual digital display of an alarm clock.
In addition, information about the buzzer alarm is obtained
in the output file. The buzzer is turned on at 30:00:000 and
this is notified through the output port BUZZER_ON at that
time. The time still evolves normally and the actual time is
obtained through the DISPLAY_TIME port. The user turns
off the buzzer at 32:45:500, where the BUZZER_ON issues
a 0. Recall that the buzzer can be deactivated using the
SNOOZE button, but the alarm will buzz again after an idle
period of ten minutes. Hence, at time 42:45:500 the buzzer
is turned on again, when the output port BUZZER_ON

 Real-time simulation of DEVS models in CD++ 143

issues a 1. Note that actual output times are equal to their
corresponding simulation times. This fact shows that delays
are imperceptibly small all along the simulation of this
alarm clock. Therefore, such simulation could meet easily
the deadlines imposed by the user.

Table 6 Output file excerpt – execution of the alarm clock

Wall-clock
time

Simulation
time Output port Value

00:01:00:000 00:01:00:000 DISPLAY_TIME 00:01
00:02:00:000 00:02:00:000 DISPLAY_TIME 00:02
00:03:00:000 00:03:00:000 DISPLAY_TIME 00:03
(…) (…) (…) (…)
00:30:00:000 00:30:00:000 DISPLAY_TIME 00:30
00:30:00:000 00:30:00:000 BUZZER_ON 1
00:31:00:000 00:31:00:000 DISPLAY_TIME 00:31
00:32:00:000 00:32:00:000 DISPLAY_TIME 00:32
00:32:45:500 00:32:45:500 BUZZER_ON 0
00:33:00:000 00:33:00:000 DISPLAY_TIME 00:33
. . .
00:42:00:000 00:42:00:000 DISPLAY_TIME 00:42
00:42:45:500 00:42:45:500 BUZZER_ON 1
00:43:00:000 00:43:00:000 DISPLAY_TIME 00:43

3.3 Flat simulation technique

Recall from Section 2 that CD++ builds a hierarchy of
model objects (atomic and coupled) and a corresponding
hierarchy of processor objects (simulator and coordinator
objects) to perform the simulation. A simulator is created
for each atomic component, whereas one coordinator is
created for each coupled one. Thus, as size and complexity
of the simulated model are increased, the associated
processor structure is increased accordingly.

The simulation evolves based on the exchange of
messages among simulators and coordinators. The number
of intermediate coordinators in the hierarchy can be
arbitrarily high depending on the model. Hence, the number
of messages needed for a single simulation cycle can be
considerable for large-scale models, because of the size of
the corresponding hierarchy. Therefore, a main problem to
be resolved is the overhead incurred by message passing
among processors (Wainer et al., 2011). To alleviate this
message passing overhead, a new flat simulation technique
was implemented (Glinsky and Wainer, 2002). The
approach is called flat in contrast to the hierarchical one that
was explained previously.

When the flat simulation technique is used, the
associated processor hierarchy is greatly simplified.
Messages are exchanged only between the root coordinator
and the flat coordinator, the only two processors that are
required in the new hierarchy. More information about the
flat technique is studied in Glinsky and Wainer (2002), and
is out of the scope of this work. Additionally, a similar

development for a different DEVS simulator can be found
in Kim et al. (2000).

4 Performance analysis of the RT simulator

Testing the performance of a simulator tool is a very
complex task. To make the analysis easier and more
accurate, a synthetic experimental frame has been
developed. To perform a thorough and accurate study of the
overhead, the synthetic model generator must be able
produce a wide variety of models. The produced models
must be similar to the ones that are studied in the real world.
To characterise a model, one should consider different
aspects of its shape and behaviour. Some of the most
important characteristics are: number of levels in the model
hierarchy, number of atomic components, number of
coupled components, total size, number of interconnections
between components, and workload in internal and external
transitions.

We used Dhrystone benchmark code (Weicker, 1984) to
generate different workload in atomic transition functions.
Dhrystone code is a synthetic benchmark intended to be
representative for system (integer) programming. Thus, it is
possible to make atomic models execute time-consuming
code inside their internal and external transition functions in
order to simulate real tasks that could be performed by
them. We used a Dell workstation with quad-Core Xeon
processor and 4 GB of RAM to conduct these experiments
(and the ones in Section 5).

The tool can generate three different types of models:
Type-1 (low complexity), Type-2 (medium complexity) and
Type-3 (high complexity). See Weicker et al. (2011), and
Moallemi and Wainer (2013) for a more detailed description
of the synthetic model generator.

Representative models can be created with the synthetic
generator. Tests results show both the percentage of success
and the worst-case response time for each case. The former
is obtained as follows:

()*100

Percentage of success
number of events number of missed deadlines

number of events

=
−

On the other hand, the worst-case response time is obtained
as follows:

()1 2- = max , , ..., NWorst case response time r r r

where ri is the response time for the ith event, and N is the
number of events for the given simulation.

Figure 4 shows the corresponding charts for the models
that were created using our synthetic model generator. The
experiments have been grouped in categories:

1 Type-1 models with variable depth

2 Type-1 models with variable width

3 Type-3 models with variable depth

4 Type-3 models with variable width.

144 G.A. Wainer

These results show the performance of the RT simulator
under very stressful scenarios, with external events arriving
at high frequencies with very strict deadlines. Under these
circumstances, the difference between the time to be spent
executing on the transition functions and the associated
deadline for the events was minimum. In some cases, that
difference was as less as 10 milliseconds, which might
represent less than 1% of the theoretical execution time.

Figure 4 Model execution with variable depth/width, (a) % of
success (b) worst-case response time (see online
version for colours)

 Percentage of Success in different models

0

20

40

60

80

100

25 30 35 40 45 50

Number of Components
 in the Model

%
 o

f s
uc

ce
ss

Variable depth Type-1
models
Variable width Type-1
models
Variable depth Type-3
models
Variable width Type-3
models

(a)

 Worst-case response time in different models

0

2000

4000

6000

8000

10000

25 30 35 40 45 50

Number of Components
 in the Model

Ti
m

e
(m

s)

Variable depth Type-1
models
Variable width Type-1
models
Variable depth Type-3
models
Variable width Type-3
models

(b)

Figure 4(a) shows the percentage of success for Type-1 and
Type-3 models when depth is variable and the width is
fixed, and also when the width is variable and the depth is
fixed, whereas Figure 4(b) illustrates the worst-case
response time for the same models. As we have explained
before, this is a very stressful scenario and the conditions
are very demanding. In particular, the previous charts show
that it is harder to simulate Type-3 models when the number
of components increases due to their complex structure, in
comparison with the equivalent (and simpler) Type-1
models. Consequently, the worst-case response times are
remarkably increased for Type-3 models.

Under these conditions, when a Type-1 model has
40 active components in its structure, more than 90% of
success can be achieved. Alternatively, less than 20% of the
deadlines are met for Type-3 models with 40 components in
their structures.

In general, the previous charts illustrate that if the
number of components is increased, deadlines are more
likely to be missed and therefore the percentage of success
is reduced. This is because the number messages needed to

perform the simulation grows in relation to the size and
complexity of the model.

The previous cases studied variations to the models
themselves, taking into consideration their depth and width.
A different approach can also be considered, where the
shape of the models remain unchanged but the scenario in
which they execute is modified. Hence, different inter-event
periods (i.e., the frequency of event arrivals) are used in
these experiments. Consequently, we simulate external
events that arrive at a different pace to the model, and
analyse the behaviour of the simulator under such
circumstances. In addition, the impact of varying the
amount of time-consuming code in transition functions is
also tested. The following charts show the results for
Type-3 models with five components per level (i.e., four
atomic components and one coupled component in each
level) and five levels in their hierarchy that were also
generated using our benchmark.

Figure 5 RT execution of models with variable
inter-event period (see online version for colours)

 Worst-case response time in Type-3 models

0

2000

4000
6000

8000

10000

12000
14000

16000

18000

20 40 60 80 100 120 140 160 180

Inter-event period (ms)

W
or

st
-c

as
e

re
sp

on
se

 ti
m

e
(m

s)

(a)

% of success in Type-3 models

0
10
20
30
40
50
60
70
80
90

100

20 40 60 80 100 120 140 160 180

Inter-event period (ms)

%
 o

f s
uc

ce
ss

(b)

Figures 5(a) and 5(b) illustrate the influence of inter-event
periods on a simulation. When the frequency of event
arrival is extremely high, the worst-case response times are
notoriously increased. This situation occurs because
excessively small inter-event times do not allow the
simulator to process all the messages involved with the
event ek before the arrival of the next event, ek+1. When this
situation arises, queued unprocessed messages are
accumulated, and therefore the simulation presents an

 Real-time simulation of DEVS models in CD++ 145

evident degradation of performance. The degradation of
performance can be noticed by observing the worst-case
response time for a given simulation. Here, a simulation
with an inter-event period of 20 milliseconds results in a
worst-case response time of 15,260 milliseconds. On the
other hand, Figure 5(b) shows that larger inter-event periods
result on greater percentages of success. When the intervals
between events become greater than 180 milliseconds, the
simulator meets all the associated deadlines for the
execution.

Figure 6 RT execution of models with variable transition time
(see online version for colours)

 Worst-case response times in models with varying
transition times

0

100000

200000

300000

400000

500000

0 50 100 150 200 250

Workload time (ms) per function

Ti
m

e
(m

s)

Varying time in internal
function
Varying time in
external function
Varying time in both
functions

(a)

 Percentage of Success in models with varying
transition times

0

20

40

60

80

100

0 50 100 150 200 250

Workload time (ms) per function

%
 o

f s
uc

ce
ss

Varying time in
internal function
Varying time in
external function
Varying time in both
functions

(b)

Figure 6 shows the results when the models spent different
amounts of time in the internal and external transition
functions. As expected, Figure 6(a) shows that the
worst-case response times are remarkably increased when
the time-consuming code is increased, because of the time
that has to be spent on executing each atomic transition
function. When the workload is executed in both transition
functions, the worst-case response time is doubled. We can
see that proper percentages of success when the workload
time per function is 0 or 50 milliseconds, in spite of the
place where the time-consuming code is being executed. In
contrast, a noticeable reduction in the percentage of success
is observed in all cases when the time in the transition
functions is increased to 100 milliseconds. In general
and as it was expected, if the workload in the transition
functions increases, the percentage of success is reduced
consequently. On the other hand, Figure 6(b) shows that the
model cannot meet its deadlines if a large amount of time is
spent in the transition functions.

Finally, the RT performance of the flat simulator is
analysed. Its execution is compared to that obtained using
the flat simulator to determine its efficiency.

In these experiments, both simulators execute Type-3
models with variable depth and width, and results are shown
in Figures 7 and 8, respectively. The depth of each model
ranges from 6 to 15, whereas the width of each model
ranges from 5 to 11. The size of the resulting models, which
is a very important parameter of the simulation, lies
between 40 and 120 components per model.

Figure 7 Comparison of hierarchical and flat approaches
(variable depth) (see online version for colours)

 Worst-case response time in Type-3 models

0

500

1000

1500

2000

2500

3000

3500

6 7 8 9 10 11 12 13 14 15

Depth

Ti
m

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(a)

% of success in Type-3 models

0
10
20
30
40
50
60
70
80
90

100

6 7 8 9 10 11 12 13 14 15

Depth

%
 o

f s
uc

ce
ss

Hierarchical
simulation

Flattened
simulation

(b)

Figure 8(a) shows a comparison of worst-case execution
times for both simulation approaches when models with
different sizes and shapes are executed. Notice that in
deeper models, the difference between the hierarchical and
flat simulators becomes more noticeable. Hence, Figure 8(b)
illustrates that when the model’s depth is equal or larger
than 7, it is not possible to meet all the deadlines, and the
percentage of success is remarkably reduced if the
hierarchical approach is used. However, if the flat technique
is employed, the percentage of success remains optimal for
models whose depth is 13.

Figures 9(a) and 9(b) show similar results for models
with variable width. Figure 9(b) shows the percentages of
success for models with different width using both
simulation techniques. Wider models are more complex,
and therefore the overhead incurred by the hierarchical
simulator is increased. However, the flat coordinator can

146 G.A. Wainer

also manage wider models more effectively, as it is shown
in both figures, where the flat approach outperforms the
hierarchical approach.

Figure 8 Comparison of hierarchical and flat approaches
(variable width) (see online version for colours)

 Worst-case response time in Type-3

0

1000

2000

3000

4000

5000

6000

5 6 7 8 9 10 11

Width

Ti
m

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(a)

 % of success in Type-3 models

0
10
20
30
40
50
60
70
80
90

100

5 6 7 8 9 10 11

Width

%
 o

f s
uc

ce
ss

Hierarchical
simulation

Flattened
simulation

(b)

In general, we can see that the flat technique outperforms
the hierarchical one, usually achieving better response time
and better percentage of success in the execution. Thus, the
use of the non-hierarchical approach allows the simulation
of larger models with better performance results. These
results are a consequence of the reduced number of
messages exchanged in the simulation that exist in the flat
simulation mechanism.

5 RT model execution

We showed the possibility of executing models under
RT CD++ with relatively small overhead. In this section,
two sample models are studied. The first is a vending
machine model; the second is a more complex model that
interacts with real hardware.

5.1 Case study 1: a vending machine model

A vending machine model (Wainer, 2009) was used for
further analysis of the RT extension in CD++. This
simulated vending machine is similar to those existing in
many cafeterias. Different items can be purchased by

inserting the sufficient amount of money and then selecting
the appropriate button to dispense the desired product. The
machine returns the correct amount of change, keeps track
of the number of items that were dispensed and informs
out-of-stock products to the customer when necessary.

The system is composed of several atomic components
(a coin collector, an item selector, a change maker, a
balance display, an item processor and others) and coupled
components (a service controller, which is composed by a
vending controller). The model has three input ports. Coins
are inserted via the COIN_IN port, items are selected via the
ITEM_IN port and change is requested via the
REQUEST_IN port. The output ports are used as follows:
ITEM_OUT is used to dispense the products, OUT
resembles the balance display of the machine and
CHANGE_OUT is used for the returned coins.

Figure 9 Vending machine conceptual model

COIN

COLLECTOR

ITEM
SELECTOR

CHANGE
MAKER

BALANCE
DISPLAY

OUT

REQUEST_IN

ITEM_IN

CHANGE_OUT

COIN_IN
 SERVICE

CONTROLLER

VENDING
CONTROLLER

ITEM
PROCESSOR

ITEM_OUT

VENDING MACHINE

Table 7 shows a sample event file for the vending machine
model. Here, a customer inserts different amounts of money
and requests a particular item. Deadlines are imposed to
each incoming event.

Table 7 External event file – vending machine

Event time Associated
deadline

Input
port

Associated
output port Value

00:00:10:000 00:00:12:500 COIN_IN OUT 0.25
00:00:15:000 00:00:17:500 COIN_IN OUT 1.00
00:00:20:000 00:00:25:500 COIN_IN OUT 0.25
00:00:25:000 00:00:30:000 ITEM_IN ITEM_OUT 28
(…) (…) (…) (…) (…)

Table 8 Output file excerpt – execution of the vending
machine in RT

Output time Output port Value

00:00:12:010 OUT 0.25
00:00:17:010 OUT 1.25
00:00:22:010 OUT 1.50
00:00:28:020 ITEM_OUT 28
00:00:30:010 OUT 0.00
(…) (…) (…)

 Real-time simulation of DEVS models in CD++ 147

For instance, the first quarter is received through the
COIN_IN port at time 00: 00:10:000, and the associated
output is expected through the port OUT before 10:250.
Then, a dollar (1.00) is received at time 15:000, and so on.
Finally, the item 28 is selected at time 25:000.

Table 8 shows an excerpt of the vending machine output
file. The balance display corresponds to the OUT port, and
its value is updated two seconds after each coin is inserted.
The item 28 is dispensed through the ITEM_OUT port at
time 00:28:000, and the table shows that events are
processed on time.

5.2 Case study 2: HILS

A more complex example is shown here, which incorporates
hardware-in-the-loop as a part of the model. A more
detailed study of this example model can be found in Li
et al. (2003).

The development approach consists in building a model
in a simulated environment, and incrementally replaces
some of the simulated components with real hardware.
Thus, we will first use a model that was entirely developed
in RT CD++, which will be referred to as the experimental
frame Test B-1. Then, some of the components are replaced
by the real hardware surrogate in the experimental frame for
Test B-2. The following figure shows a block diagram of the
2189M EZ-KITLITE DSP Board, which was used in the
experiment.

Figure 10 Scheme of the analogue devices 2189M EZ-KITLITE
evaluation board

Figure 11 Experimental frame for Test B-1

The sampling rate of the CODEC is programmable with
four separate settings, offering a 64 kHz, 32 kHz, 16 kHz or
8 kHz sampling rate (from a master clock of 16.384 MHz).
In order to control the CODEC and make use of the ADC
(A/D converter) and DAC (D/A converter), we need to
program the control registers. This prototype includes
hardware and software components and is implemented in
two stages. In the first stage, a set of models was built using
RT CD++. Figure 11 shows the experimental frame for Test
B-1, which was used to test the behaviour of the CODEC
model.

The experimental frame for Test B-1 has five atomic
models:

• Clock: this model generates control signals with a
predefined period.

• Control: this model distinguishes the incoming signal.
If a command signal is received, it will invoke the
CODEC atomic model.

• CODEC: this model simulates the behaviour of the
CODEC.

• Analogue signal generator: this model generates an
analogue signal.

• Display: this model updates and displays the results
obtained from the CODEC model.

The coupled model shown in Figure 11 was built to test the
behaviour of the software version of the CODEC. Table 9
shows the simulation output for Test B-1.

Table 9 Output file excerpt for Test B-1

Output time Port Value

00:00:40:708 Signal 0001
00:00:41:008 Signal 0110
00:00:41:308 Signal 0011
00:00:41:608 Ground 0000
00:00:41:900 Signal 1010
00:00:42:200 Ground 0000
(…) (…) (…)

Table 9 shows the output time, the associated port and the
received value. Hence, the first digital signal is obtained at
time 40:708 through the signal output port. Its associated
value is 0001, a binary string that represents the digital
value of the signal. At the time 41:608, another digital
signal arrives through ground output port and its value is
0000. All digital signals are processed successfully through
the software CODEC model.

148 G.A. Wainer

Figure 12 Experimental frame for Test B-2 (includes
hardware-in-the-loop)

The application model described previously was reused,
replacing the CODEC by the actual hardware. The
experimental frame for Test B-2 was modified to support
interaction with the real CODEC on the board, and existing
atomic models were reused. This experimental framework is
depicted in the next figure.

In this test, a CLOCK model generates periodic signals
to awake the control model. Then the CONTROL model
invokes the TCL model, which is in charge of initialising
the CODEC and start the conversion. When the CODEC
finishes the conversion, the DATATRANSFER model will
acquire these data and send them to the control model.
Finally, the DATATRANSFER model will feed the data to
the DISPLAY model.

The new atomic models are:

• TCL: this model invokes and opens the VisualDSP
debugger system. Once the debugger system is opened,
the different TCL files needed for A/D and D/A access
can be invoked to obtain samples and regenerate the
analogue signal.

• DATATRANSFER: this model reads the digital samples
and sends them back to the control model. In addition,
the data will be written back to the board for display if
the DAC is working.

To study the correctness and performance of the whole
simulation, different tests were conducted to evaluate the
software and hardware components, as well as the program
as a whole. A test is presented below.

At the initialisation phase, the CLOCK model generates
a control signal to start the CONTROL model. The
CONTROL model then invokes the TCL model to start an
IDE application and to load the TCL script. After pressing
the reset button on the DSP board, the IDE debugger is
opened. It automatically loads the talk-through program into
the DSP board. At the same time, the DATATRANSFER
model is in sleep state and waits for the data to be generated
by the CODEC on the DSP board. Upon reception of the
converted digital data, the DATATRANSFER model takes
the data and sends them back to the CONTROL model.
Finally, through the DISPLAY model, these samples will be
updated and stored in a bin. After one simulation cycle, the
clock will generate the next command. The simulation can
be terminated by a preset simulation time or manually.

The following figure shows the output file obtained after
one simulation cycle:

According to the above execution results in Table 10, all
the signal conversions are successful and the values are
obtained properly. If we compare these results with those
corresponding to Test B-1, we can see that they match.
Differences in the value column are a result of the
representation format and the analogue waveform used. In
this final stage, D/A functionality of the CODEC is added
into the simulation cycle. The purpose of this test is to
verify the correctness of the digital samples obtained from
the previous testing case. Ideally, when these digital
samples are converted back into the analogue form, the
oscilloscope should display exactly the same waveform
used for the previous testing.

Table 10 Output file excerpt for an experiment using Test B-2
experimental frame

Output time Port Value

00:00:40:708 Signal 0.50391
00:00:41:008 Signal –1.00000
00:00:41:308 Signal 0.97546
00:00:41:608 Ground 0.03967
00:00:41:900 Signal –1.00000
00:00:42:200 Ground 0.03857
00:00:42:500 Signal –1.00000
(…) (…) (…)

5.3 Case study 3: a robotic arm controller

The Lego Mindstorms NXT is a programmable robotics kit.
The main component of the kit is a computer, called the
NXT, which can take inputs from up to four sensors and
control up to three motors via RJ12 cables. The kit includes
three identical servomotors that have built-in reduction gear
assemblies and can sense their rotations within one degree
of accuracy. The kit also includes four sensors, each with a
different capability. The touch sensor, the light sensor, the
sound sensor, the ultrasonic sensor can measure distances
and detect movement. Using NXT++ (a C++ open source
library that provides functions to control the sensors and
motors via an USB or Bluetooth connection from a
computer), users can program different applications.

Using the toolkit, we built a robotic arm that can lift,
pivot, and grab objects with its claws. The robot uses sound,
touch and colour sensors, and two motors: one for moving
the arm up and down and one for the claw to grab and
release. In this case, we built a DEVS model to control the
behaviour of the robot (using ECD++ on a Linux system),
and we installed the code needed in the NXT
microcontroller. After compiling the model ECD++
provides an interface to open a Telnet connection to the
target board and then the executable simulation file, the
model file and the event files were copied to the target
board. The connection between the robot arm and the board
was via USB port.

 Real-time simulation of DEVS models in CD++ 149

Figure 13 Robotic arm architecture (includes hardware-in-the-loop) (see online version for colours)

Figure 14 ColorSensor DEVS graph

The arm controller waits for a sound input from the user. On
getting a sound input, the arm moves down for a
pre-specified amount of time or until the touch sensor hits a
ball. Figure 13 shows the design hierarchy of atomic models
in the top coupled model for RoboArm model. The
following figure shows a model of the robotic arm, a
coupled model composed of five atomic models:
ArmController, Sound Controller, UltrasonicSensorC,
ColorSensor and Claw.

There is a top coupled model that contains five atomic
models. Sound, touch and colour sensor atomic models are
responsible for sound, touch and colour sensor controlling.
These models receive the input of the sensors and forward it
to the arm controller model. The arm controller model is
responsible for controlling the arm. It receives inputs from
sensors models and sends outputs to colour sensor model,
claw model and arm motor. The claw model is only
responsible for the claw motor. The sound controller waits
until it receives an input from a sound sensor, and then

triggers the arm controller. The controller uses the
information from all the sensors, and decides how to react
according to the values received. The ultrasonic sensor
model is responsible for determining when the robot has
found a ball. When a ball is found, a colour sensor is
activated. The ArmController uses this value, and tells the
claw to grab the ball or not based on the colour.

When the touch sensor detects a ball, the arm stops.
Then the light sensor allows deciding what to do depending
on the colour of the ball. The sound and touch sensor only
receive an input when there is an input available for them,
but the colour sensor receives input in a periodic manner,
during a certain time interval which the arm controller asks
it to detect the colour.

The idea is to simulate the model first, and then to port
the simulated software to control the actual robotic arm.
Figure 14 describes the behaviour of the colour sensor
controller described above, defined as an atomic model
using a DEVS graph.

150 G.A. Wainer

Figure 15 ArmController DEVS graph

The external transitions receive inputs and initiates
appropriate state transitions. Once the right state is chosen
(redball, blueball), the value is transmitted through the
corresponding output port. Then, the model waits for the
next input. The sensor takes 1 ms to detect the colour
(simulated or RT), after which the output and internal
transition are triggered. The other models are similar to this
one. For instance, the UltraSonicSensorC model waits for
inputs, and depending on the distance, it sends an output to
start the motor. The Claw atomic model receives different
inputs and according to their values, it gives the order to
grab the ball, release it, or finish. The ArmController model
is described in Figure 15.

The ArmController waits for inputs and when received,
the arm changes to the informsonar state for 1 ms. After this
time, an output is sent to ultrasonic sensor requesting
horizontal movement. The controller then changes to state
checkball and waits for an input (the idea is to connect this
model to the ultrasonic sensor, but the input could come
from any source of inputs). When a new input is received,
the controller goes into the informColor or goingDown
states (depending on the input received). The colour must be
checked, or the horizontal and vertical motors must be
moved. When in the informColor state, an output is sent to
request the colour values. The goUp state is used when a
blue ball is detected (making the arm to move up).
Otherwise, the order to close the claw is sent.

As explained above, the idea is to simulate the model
first, and then to port the simulated software to control the
actual robotic arm. For instance, when we want to test the
ultrasonic sensor model, we obtain the following simulation
results:

INPUTS OUTPUTS

05:00 IN_U1 1 06:001 out_u 1

06:00 IN_U 19 09:001 out_u 2

07:00 IN_U 2 11:001 out_u 3

08:00 IN_U1 1

09:00 IN_U 9

10:00 IN_U1 1

11:00 IN_U 2

As we can see, we can test the atomic model using various
inputs and obtain the desired outputs within tight deadlines,
but in simulation time. After, each model was ported to
execute in E-CD++. The models are not modified, and they
still control the system when running in RT. Following, we
show the inputs and outputs of the ultrasonic sensor atomic
model executing in RT using E-CD++ in RT mode.

INPUTS

05:00 06:00 IN_U1 OUT_U 1

06:00 07:00 IN_U OUT_U 19

07:00 08:00 IN_U OUT_U 2

08:00 09:00 IN_U1 OUT_U 1

09:00 10:00 IN_U OUT_U 9

10:00 11:00 IN_U1 OUT_U 1

11:00 12:00 IN_U OUT_U 2

OUTPUTS

Cur Time: 06:001 Deadline: 06:000

(NOT succeeded) OutPort: out_u PortValue:

 Real-time simulation of DEVS models in CD++ 151

1

Cur Time: 09:001 Deadline: 07:000

(NOT succeeded) OutPort: out_u PortValue:
2

Cur Time: 11:001 Deadline: 08:000

(NOT succeeded) OutPort: out_u PortValue:
3

As we can see, the tool helps the designer in finding
problems with the RT constraints, and fixing the model
accordingly. The following test shows the overall results for
the robot arm controller, and Figure 16 shows a picture of
the actual robotic controller in action.

INPUTS

05:00 06:00 IN_S OUT_M 30

07:00 06:00 IN_U OUT_M 4

09:00 06:00 IN_U OUT_M 2

10:00 06:00 IN_CS OUT_M 9

OUTPUTS

Cur Time: 05:002 (no dealine specified)
OutPort: out_h PortValue: 1

Cur Time: 07:002 Deadline: 06:000(NOT
SUCCEEDED) OutPort: out_m PortValue: 0

Cur Time: 07:002 (no dealine specified)
OutPort: out_h PortValue: 0

Cur Time: 11:025 (no dealine specified)
OutPort: out_claw PortValue: 1

Cur Time: 12:025 Deadline: 08:000 (NOT
succeeded) OutPort: out_m PortValue: 1

Cur Time: 17:025 Deadline: 10:000 (NOT
succeeded) OutPort: out_m PortValue: 0

5.4 Discussion

Testing the performance of a simulator is usually a very
complicated task. We have developed a synthetic model
generator to facilitate the testing phase. To emulate several
degrees of complexity in their structures, different types of
models have been defined. In addition, it is possible to
determine a given workload to be executed in the atomic
transition functions. A thorough testing has been carried out
on different simulation techniques provided in the CD++
toolkit (Moallemi and Wainer, 2010; Rafsanjani-Sadeghi
et al., 2010; Shang and Wainer, 2008). The performance of
each simulator has been characterised. The overhead
incurred by the different simulators is bounded and the
performance is appropriate in most cases. The obtained
results have shown the possibility of developing a RT
extension to the toolkit.

The benchmark experiments have shown good results on
RT executions. We have studied the percentage of success
and worst-case response times under different scenarios.
Several properties of the model and its environment have

been analysed. Some weaknesses have been pointed out in
the analysis of the tool, specifically on the execution of
extremely large models. The message-passing process may
affect the execution performance, mainly if the model
structure is too large or complex. Even though the
performance degradation was small, it was desirable to
provide more efficiency not only in RT but also in virtual
time simulations. Thus, a new flattened simulator has been
presented to overcome the described problems.

Figure 16 Robotic arm with red and blue ball (see online
version for colours)

Source: http://youtube.com/arslab

The flattened simulator transforms the hierarchical structure
of a model to a flattened structure in order to reduce the
overhead incurred by the message passing among simulators
and coordinators. The resulting non-hierarchical structure is
simpler and more effective. The non-hierarchical approach
can be applied not only for DEVS but also for Cell-DEVS
simulations.

A thorough testing has been performed to the flattened
simulator. In most cases, the flattened technique
outperforms the hierarchical technique. We have conducted
a thorough testing of the new flattened simulator, comparing
the results with those obtained using the hierarchical
simulator. Both synthetically generated models and existing
models from the CD++ library were executed. The
experiments included virtual time and RT model execution.

When the virtual time approach is used, in most cases
the flattened simulator is more efficient and reduces the

152 G.A. Wainer

simulation time. On the other hand, when the RT approach
is used, the flattened simulator provides better response
times and greater percentages of success.

Not only DEVS but also cell-DEVS models have been
executed employing the new simulation technique. When
the flattened simulator is used, the processor structure is
more simple and, usually, more effective.

The use of the non-hierarchical simulator reduces the
number of messages exchanged in the simulation process.
This reduction of overhead leads to better performance
results. In general, we have shown that the new flattened
simulator outperforms the hierarchical one.

6 Conclusions

We have provided a means to execute models in RT using
the CD++ toolkit. When the new RT extension is employed,
events must be handled timely and time constraints can be
stated and validated accordingly. The RT simulator ties the
advance of the simulation time to the wall-clock time.
Consequently, these new features allow interaction between
the simulator and the surrounding environment. The new
RT simulator has been tested and analysed.

The RT performance of the CD++ toolkit was analysed.
The benchmark experiments showed good results on RT
executions. We studied the success rate and worst-case
response times under different scenarios. Several properties
of models and their environment were analysed. Some
weaknesses were pointed out in the analysis of the tool,
specifically about the execution of extremely large models.
The message-passing process may influence the execution
performance, mainly if the model structure is too large or
complex. The flat simulator transforms the hierarchical
structure of a model into a flat structure to reduce the
overhead incurred by message passing among simulators
and coordinators. The resulting non-hierarchical structure is
simpler, and its performance was analysed in this work. In
general, we showed that the flat simulator outperforms the
hierarchical, alleviating the overhead incurred by message
passing when large or complex models are executed.

Finally, we presented some examples to illustrate how to
execute DEVS models in RT CD++. In the last example, we
showed a way to execute HILS of discrete event models
using RT CD++. Firstly, a DEVS model was built to
simulate the behaviour of a CODEC together with a test
program using that device. Secondly, the actual CODEC
was deployed as a hardware prototype to replace the CD++
model, integrating the prototype into the original DEVS
component. Hence, we demonstrated the use of RT CD++
to analyse models in a simulated environment and to
execute these models in a hardware surrogate.

Acknowledgements

This work was partially funded by NSERC. We want to
acknowledge Lidan Li, Mohammad Moallemi, Ezequiel

Glinsky, Faezeh Rafsanjani and Christian Jacques who
developed some of the software and models presented here.

References
Al-Zoubi, K. and Wainer, G. (2013) ‘RISE: a general simulation

interoperability middleware container’, Journal of Parallel
and Distributed Computing, Vol. 73, No. 5, pp.580–594,
Elsevier.

Cho, K., Zeigler, B.P., Cho, H.J. et al. (2000) ‘Design
considerations for distributed real-time DEVS’, AIS 2000.

Cho, S.M. and Kim, T.G. (1998) ‘Real-time DEVS simulation:
concurrent time-selective execution of combined RT-DEVS
and interactive environment’, 1998 Summer Computer
Simulation Conference, Reno, Nevada, USA, pp.410–415.

Furfaro, A. and Nigro, L. (2009) ‘A development methodology for
embedded systems based on RT-DEVS’, Innovations
in Systems and Software Engineering, June, Vol. 5, No. 2,
pp.117–127.

Glinsky, E. and Wainer, G. (2002) ‘Performance analysis of real-
time DEVS models’, Proceedings of SCS Winter Computer
Simulation Conference, San Diego, CA.

Hong, J.S., Song, H.H., Kim, T.G. and Park, K.H. (1997) A
Real-Time Discrete Event System Specification Formalism for
Seamless Real-Time Software Development, Springer,
Netherlands.

Hu, X. and Zeigler, B.P. (2005) ‘Model continuity in the design of
dynamic distributed real-time systems’, IEEE Transactions
on Systems, Man and Cybernetics, Part A, Vol. 35, No. 6,
pp.867–878.

Kim, K., Kang, W., Sagong, B. and Seo, H. (2000) ‘Efficient
distributed simulation of hierarchical DEVS models:
transforming model structure into a non-hierarchical one’,
Proceedings of the 33rd Annual Simulation Symposium,
Washington DC, USA.

Li, L., Pearce, T. and Wainer, G. (2003) ‘Interfacing real-time
DEVS models with a DSP platform’, in Proceedings of the
EuroSim Industrial Simulation Symposium 2003, Valencia,
Spain.

Liu, J. (2000) Real-time Systems, Prentice Hall, Upper Saddle
River, NJ, USA.

Liu, Q. and Wainer, G. (2007) ‘Parallel environment for DEVS
and cell-DEVS models’, Simulation, Transactions of the SCS,
Vol. 83, No. 6, pp.449–471.

Moallemi, M. and Wainer, G. (2010) ‘Designing an interface for
real-time and embedded DEVS’, Proceedings of 2010 Spring
Simulation Conference (SpringSim10), DEVS Symposium,
Ottawa, Canada.

Moallemi, M. and Wainer, G. (2013) ‘Modeling and
simulation-driven development of embedded real-time
systems’, Simulation Modelling Practice and Theory, Vol. 38,
No. 11, pp.115–131.

Rafsanjani-Sadeghi, F., Moallemi, M. and Wainer, G. (2010)
‘Modeling and controlling a robotic arm with E-CD++’,
Proceedings of the 2010 ACM/SCS Summer Computer
Simulation Conference (Poster Session).

Saadawi, H. and Wainer, G. (2012) ‘Hybrid DEVS models
verification’, Proceedings of 2012 SCS/ACM/IEEE
Symposium on Theory of Modeling and Simulation,
TMS/DEVS’12, Orlando, FL.

 Real-time simulation of DEVS models in CD++ 153

Saadawi, H. and Wainer, G. (2013a) ‘On the verification of hybrid
DEVS models’, Proceedings of 2013 SCS/ACM/IEEE
Symposium on Theory of Modeling and Simulation,
TMS/DEVS’13, San Diego, CA.

Saadawi, H. and Wainer, G. (2013b) ‘Principles of DEVS models
verification’, SIMULATION: Transactions of the Society for
Modeling and Simulation International, January, Vol. 89,
No. 1, pp.41–67.

Saadawi, H., Wainer, G. and Moallemi, M. (2012) ‘Principles of
DEVS models verification for real-time embedded
applications’, in Popovici, K. and Mosterman, P. (Eds.): Real-
time Simulation Technologies: Principles, Methodologies,
and Applications, CRC Press, Taylor and Francis.

Shang, H. and Wainer, G.A. (2008) ‘Dynamic structure DEVS:
improving the real-time embedded systems simulation and
design’, 41st Annual Simulation Symposium, Ottawa, Canada.

Song, H.S. and Kim, T.G. (2005) ‘Application of real-time DEVS
to analysis of safety-critical embedded control systems:
railroad crossing control example’, SIMULATION, February,
Vol. 81, No. 2, pp.119–136.

Wainer, G. (2002) ‘CD++: a toolkit to develop DEVS models’,
Software – Practice and Experience, Vol. 32, No. 3,
pp.1261–1306.

Wainer, G. (2009) Discrete-Event Modeling and Simulation: A
Practitioner’s Approach, CRC Press, Boca Raton, FL.

Wainer, G., Glinsky, E. and Gutiérrez-Alcaraz, M. (2011)
‘Studying performance of DEVS modeling and simulation
environments using the DEVStone benchmark’,
SIMULATION: Transactions of the Society for Modeling and
Simulation International, July, Vol. 87, No. 7, pp.555–580.

Weicker, R.P. (1984) ‘Dhrystone: a synthetic systems
programming benchmark’, Communications of the ACM,
Vol. 27, No. 10, pp.1013–1030.

Zeigler, B., Kim, T. and Praehofer, H. (2000) Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems, Academic Press, New York, NY.

Zeigler, B.P. and Chi, S. (1992) ‘Symbolic discrete event system
specification’, IEEE Transactions on Systems, Man and
Cybernetics, Vol. 22, No. 6, pp.1428–1443.

